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Performance Variation

● Same job can vary significantly in run time
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Causes of Performance Variation

● System noise
● Software bugs
● Hardware performance degradation
● Shared resource contention 
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Mitigating Variability from Shared Resource 
Contention
● Adaptive in-flight message rerouting
● More bandwidth
● Resource utilization aware job scheduling

4



RUSH: Resource Utilization-aware Scheduler for HPC

● Machine learning can predict future variation
● Schedule jobs with apriori knowledge of variation
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Predicting Variation

● Model Input
○ System state
○ Job description

● Model Output
○ 1 if job will experience variation; 0 otherwise
○ variation: >1.5 st. devs. from average run time
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Building a Dataset

● Proxy applications
○ Kripke, AMG, Laghos, SWFFT, sw4lite, LBANN, pennant

● Run each 3x a day from August 2020 - February 2021 on 
Quartz system at LLNL
○ Record performance (walltime)
○ Collect IO and Network counters with LDMS (5 mins. before job)
○ Collect network benchmarks
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Model Selection

● Train AdaBoost, DecisionForest, ExtraTrees, kNN
○ Record F1-score using stratified k-fold cross validation

● Choose model with highest F1-score
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Feature Selection

● Recursive feature elimination
● Select 20 best features

○ xmit_rate, recv_rate, xmit_discards, mpisend_time, mpirecv_time

● Reduces latency collecting features
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Traditional Scheduling
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Traditional Scheduling
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Sort queue Q 
with policy R1



Traditional Scheduling
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Run jobs that can 
be immediately 

started



Traditional Scheduling
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Reserve jobs that 
cannot be started 

immediately



Traditional Scheduling

14

Backfill remaining 
jobs



Traditional Scheduling
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RUSH only 
modifies the start 

function



Variation-Aware Scheduling
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Start Function



Variation-Aware Scheduling
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Start Function

If model predicts 
variation, then put job 
back on top of queue



Variation-Aware Scheduling

18

Start Function

Otherwise run 
job as normal



Variation-Aware Scheduling
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Start Function

Limit skips to prevent 
job starvation



Implementation

● Machine learning trained and exported with SciKit
● Extend Flux1 to implement RUSH
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1 https://flux-framework.org/



Experiments

● Run simulated workload on Quartz
○ 512 node allocation
○ ~190 jobs with 1 hour makespan
○ Run FCFS+EASY (5x) and RUSH (5x)
○ Record makespan, average wait time, and # jobs 

experiencing variation
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Results: All Data All Applications

● Model trained on entire 
dataset, running all apps

● Variation drops 
significantly
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RUSH reduces # 
jobs with variation



Results: All Data All Applications

● Model trained on entire 
dataset, running all apps
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RUSH reduces max 
run time

RUSH reduces 
range of run times



Results: Partial Data Partial Applications

● Test generalizability
● Train model on AMG, Kripke, sw4lite, and SWFFT data
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Results: Partial Data Partial Applications

● Model trained on some 
apps, while running other 
apps
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RUSH reduces # 
jobs with variation



Results: Partial Data Partial Applications

● Model trained on some 
apps, while running other 
apps
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RUSH reduces max 
run time

RUSH reduces 
range of run times



Results: Partial Data Partial Applications

● Model trained on some 
apps, while running other 
apps
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RUSH generalizes to apps 
it has not seen



Results: Throughput
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All 5 experiments in 
paper had an 

improvement in 
makespan



Conclusion

● Collect historical performance data
● Train machine learning models to predict variation
● Use variation prediction to schedule jobs
● Reduce max run time by up to 5.8% and average number 

of runs with variation from 17 to 4
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