Resource Utilization Aware Job Scheduling to Mitigate Performance Variability
Daniel Nicholst, Aniruddha Marathe*, Kathleen Shoga*, Todd Gamblin*, Abhinav Bhatelet

Wiy i
&

UNIVERSITY OF ‘I‘ University of Maryland, College Park

* Lawrence Livermore National Laboratory 1

Relative Performance

S e,
2, %
< %
7 <

Performance Variation

e Same job can vary significantly in run time

N W b~ U1 OO N

Variability in performance of proxy applications over time

- X % swdlite
PENNANT
+ + X K
Bl £ ++ +
+
FRERF - g " S % g +
= xx X + X' x X +)2.x X el 4 + +¢ X <+ X"x_
i o W I o N e I, TR s o IS M T M DN M il e P i
Wirsosnins x X ¥ T)(;+} FX ;{(X % rx x » %}*& i
e Fay g ... Sk XX+ 5% - XX
-a:*++»< R x+x)<+ = 3" +++x _¥+x + X kb 4
I T WO <. T LI i e ST Sl AR i - S TN, S
Nov 12 Nov 19 Nov 26 Dec 03 Dec 10 Dec 17 Dec 24 Dec 31

:PSSG

PARALLEL SOFTWARE 2
AND SYSTEMS GROUP

+
X

Causes of Performance Variation

e System noise

o Software bugs

o Hardware performance degradation
o [Shared resource contention_]

,,,,,,,

B PSSG | A\5 svstews crour 3

Mitigating Variability from Shared Resource
Contention

o Adaptive in-flight message rerouting
o More bandwidth
« [Resource utilization aware job scheduling |

,,,,,,,

B PSSG | A\5 svstews crour 4

RUSH: Resource Utilization-aware Scheduler for HPC

o Machine learning can predict future variation
o Schedule jobs with apriori knowledge of variation

J}ste/bo
\‘{ Variability Predictor

Modified
Job
Schedule

ars VS
B"y \o° = &
Q
‘§§
¥

B PSSG| s tnecs 5

Predicting Variation

e Model Input
o System state
o Job description
o Model Output
o | if job will experience variation; 0 otherwise
o variation: >1.5 st. devs. from average run time

B PSSG| s tnecs 6

Building a Dataset

e Proxy applications
o Kripke,AMG, Laghos, SWFFT, sw4lite, LBANN, pennant

e Run each 3x a day from August 2020 - February 2021 on
Quartz system at LLNL

o Record performance (walltime)
o Collect IO and Network counters with LDMS (5 mins. before job)
o Collect network benchmarks

,,,,,,,

B PSSG | A\5 svstews crour 7

Model Selection

e Irain AdaBoost, DecisionForest, ExtraTrees, kNN

o Record Fl-score using stratified k-fold cross validation

e Choose model with highest Fl-score

Comparing F| Scores for All vs. Job-only System Data

) All Nodes mmmm Job-only Nodes [

...... e
g \\ %
A \
=y N\
AdaBoost JDecisionForest ExtraTrees kNN

B PSSG| s tnecs 8

Feature Selection

e Recursive feature elimination

e Select 20 best features

o Xmit_rate, recv_rate, xmit_discards, mpisend time, mpirecv_time

e Reduces latency collecting features

B PSSG| s tnecs 9

Traditional Scheduling

SOV NO R WN -

—

Input Q < queue of jobs
M + ML model
S « current machine state
SkipTable +— Count of times skipped for each job
Ry + Queue ordering policy
Rz « Backfill ordering policy

sort Q according to R
for job j € Q do
if j can be started currently then
pop j from Q
Start(j,Q, M, S, SkipTable)
else
Reserve j at earliest possible time
L« Q\ {5}
sort L according to R2
for job j' € L do
if 7/ can be started currently without delaying reservation
of j then
pop j' from Q
Start(j', Q, M, S, SkipTable)
end if
end for
break
end if
end for

LERSIy,

® PSSG | A5 sVstews crovr

TRyLN

10

3

Feature Schedule
Subset

Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 [sonQaccording to Rn] Sort queue Q
2 for job j € @ do . .
3 if j can be started currently then Ie
4 pop j from Q Wlth POIlCY p
5 Start(j,Q, M, S, SkipTable)
6 else
7 Reserve j at earliest possible time
8 L<Q\{j)
9 sort L according to Ra2
10 for job j' € L do
11 if j/ can be started currently without delaying reservation
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for

LRSIy,

® PSSG | A5 sVstews crovr 1

%
TRy LN

Y
K

Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 sort Q according to Ry .
2 for job j € Q do
3 if j can be started currently then Ru n JObs that Can
4 p j from Q o .
s [Start(j. Q. M, S, SkipTable)] be |mmed|ate|y
6 else
7 Reserve j at earliest possible time
8 L<Q\{j} started
9 sort L according to Ra2
10 for job j' € L do
11 if j/ can be started currently without delaying reservation
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for

B PSSG| s tnecs 12

%
TRYLN

Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 sort Q according to Ry
2 for job j € Q do
3 if j can be started currently then 1
1 I Reserve jobs that
5 Start(j,Q, M, S, SkipTable)
L T —— cannot be started
7 IReserve j at earliest possible tlme]
8 T+—Q\U 0 0
9 sort L acci)r(j;ing to R2 Im med Iately
10 for job j' € L do
11 if j/ can be started currently without delaying reservation
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for

B PSSG| s tnecs 13

%
TRYLN

Traditional Scheduling

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 sort Q according to Ry
2 for job j € Q do
3 if j can be started currently then
4 pop j from Q
5 Start(j,Q, M, S, SkipTable)
6 else
7 Reserve j at earliest possible time
8 L« Q\{j}
9 sort L according to Ra2
10 for job j' € L do
11 if j/ can be started currently without delaying reservation|
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15
16 break
17 end if
18 end for
e PARALLEL SOFTWARE

@ PSSG|

%
TRyLN

AND SYSTEMS GROUP 14

Feature
Subset

Backfill remaining
jobs

Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

sort Q according to R
for job j € Q do
if j can be started currently then
pop i from Q

|
2
3
4
2 [Start(j. Q,M, .S.SklpTable)] RUSH on Iy
';
9

else
Reserve j at earliest possible time o fro
LeQ\ () modifies the start
sort L according to Ra2
10 for job j' € L do .
11 if 7/ can be started currently without delk fU n Ctl O n
of j then
12 pop i’ from Q
13 g]_tlirrt(j',Q, M, S, SkipTable)|
14 en
15 end for
16 break
17 end if
18 end for

B PSSG| s tnecs 15

%
TRYLN

......

>

Start Function

Input 5 < job
() < scheduler queue
M <+ ML model
S < current machine state
SkipTable <— Count of times skipped for each job

1 if SkipTable[j] < j.skip_threshold and

M(j,S) € variation labels then
SkipTable[j] < SkipTable[j] + 1
push j after front of)

else
launch job j

end if

AN B Wi

PARALLEL SOFTWARE 16
AND SYSTEMS GROUP

Proxy Apps

Variation-Aware Scheduling .

Start Function

Input 5 < job
() < scheduler queue
M <+ ML model

S < current machine state |f model redicts
SkipTable <— Count of times skipped fc P

if SkipTable[j] < j.skip_threshold and | Variation, then put job

M(j,S) € variation labels then back t f
SkipTable[j] < SkipTable[j] + 1 aCk on top of queue
push 7 after front of ())

else
launch job j

end if

I

AN B Wi

,,,,,,,

B PSSG | A\5 svstews crour 17

S,
\g Variability Predictor

pppppp

Variation-Aware Scheduling

s
e
w7

Start Function

Input 5 < job
() < scheduler queue
M <+ ML model
S < current machine state
SkipTable <— Count of times skipped for each job
1 if SkipTable[j]| < j.skip_threshold and
M(j,S) € variation labels then
SkipTable[j] < SkipTable[j] + 1
push 7 after front of @)

2
3
4 (else
5| launch job j Otherwise run
6 \end if .
job as normal

.......

® PSSG | A\5'sVstems crovr 18

odel

eeeeeeee

Proxy Apps

Variation-Aware Scheduling .

Start Function

Input 5 < job
() < scheduler queue
M <+ ML model
S < current machine state
SkipTable <— Count of times skipped for each job

1 if SkipTable[;] < j.skip_threshold)and

M(3,S) € variation labels then imi i
2 kip'll'able[j] < SkipTable[;] + 1] Limit SI(IPS to Prevent
3 push j after front of Q]Ob starvation
4 else
5 launch job j
6 end if

B PSSG| s tnecs 19

& Variability Predictor |
M
Feature

Implementation

e Machine learning trained and exported with SciKit
o Extend Flux' to implement RUSH

| https://flux-framework.org/

B PSSG| s tnecs 20

Experiments

e Run simulated workload on Quartz
o 512 node allocation
o ~190 jobs with | hour makespan
o Run FCFS+EASY (5x) and RUSH (5x)
o Record makespan, average wait time, and # jobs
experiencing variation

»»»»»»

B PSSG | A5 svstems crovr 21

Results: All Data All Applications

e Model trained on entire
dataset, running all apps

e Variation drops
significantly

RUSH reduces #
jobs with variation

PARALLEL SOFTWARE
AND SYSTEMS GROUP

® PSS

Number of jobs with variation

22

Number of Occurrences of Variation (ADAA)

s FCFS IS
RUSH + ADAA ==l

Results: All Data All Applications

,,,,,,,

Model trained on entire
dataset, running all apps

RUSH reduces max
run time

RUSH reduces
range of run times

PSSG ' AND SYSTEMS GROUP

Time (s)

23

(o]

50

800

750

700

650

Variability in Application Performance (ADAA)

Laghos LBANN

675
650

600

550

500
475

FCFS C—3

AMG Kripke SWFFTPENNANTsw4lite

Results: Partial Data Partial Applications

e Test generalizability
e Train model on AMG, Kripke, sw4lite,and SWFFT data

,,,,,,,

B PSSG | A\5 svstews crour 24

Results: Partial Data Partial Applications

e Model trained on some
a—PPS, Whlle running Other Number of Occurrences of Variation (PDPA)

10 ..
FCFS
apps 8 _—

RUSH reduces #
jobs with variation

Number of jobs with variation

Laghos LBANN

““““““

B PSSG | 2N5 svstems crour 25

Results: Partial Data Partial Applications

e Model trained on some
apps, while running other

Variability in Application Performance (PDPA)

S o] —
aPPS - RUSH + PDPA C—1
RUSH reduces max ; g0l] i —
— 6.0%
700 T — T

RUSH reduces 650 e _
range of run times

® PSSG | AN s 2

Results: Partial Data Partial Applications

e Model trained on some

Variability in Application Performance (PDPA)

apps, while running other

FCES T—1
apps e RUSH + PDPA C—1
@ Fo 100 [PRSI R _@
€ — 1 _
o = 750 i
RUSH generalizes to apps ~ S 6.0%
. 700 m—— I
it has not seen =T =
050 Laghos LBANN

»»»»»»

B PSSG | A5 svstems crovr 27

Results: Throughput All 5 experiments in

paper had an
Comparison of Makespan Improvement |n

O ecrs wmm usH mmm makespan

Makespan (mins.)

ADAA ADPA PDPA WS SS

Experiment

B PSSG | S thovr 28

Conclusion

e Collect historical performance data
e Train machine learning models to predict variation
e Use variation prediction to schedule jobs

e Reduce max run time by up to 5.8% and average number
of runs with variation from 17 to 4

B PSSG | S thovr 29

