Resource Utilization Aware Job Scheduling to Mitigate Performance Variability
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Performance Variation

e Same job can vary significantly in run time
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Variability in performance of proxy applications over time
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Causes of Performance Variation

e System noise

o Software bugs

o Hardware performance degradation
o [Shared resource contention_]
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Mitigating Variability from Shared Resource
Contention

o Adaptive in-flight message rerouting
o More bandwidth
« [Resource utilization aware job scheduling |
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RUSH: Resource Utilization-aware Scheduler for HPC

o Machine learning can predict future variation
o Schedule jobs with apriori knowledge of variation
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Predicting Variation

e Model Input
o System state
o Job description
o Model Output
o | if job will experience variation; 0 otherwise
o variation: >1.5 st. devs. from average run time
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Building a Dataset

e Proxy applications
o Kripke,AMG, Laghos, SWFFT, sw4lite, LBANN, pennant

e Run each 3x a day from August 2020 - February 2021 on
Quartz system at LLNL

o Record performance (walltime)
o Collect IO and Network counters with LDMS (5 mins. before job)
o Collect network benchmarks
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Model Selection

e Irain AdaBoost, DecisionForest, ExtraTrees, kNN

o Record Fl-score using stratified k-fold cross validation

e Choose model with highest Fl-score

Comparing F| Scores for All vs. Job-only System Data
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Feature Selection

e Recursive feature elimination

e Select 20 best features

o Xmit_rate, recv_rate, xmit_discards, mpisend time, mpirecv_time

e Reduces latency collecting features
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Traditional Scheduling
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Input Q < queue of jobs
M + ML model
S « current machine state
SkipTable +— Count of times skipped for each job
Ry + Queue ordering policy
Rz « Backfill ordering policy

sort Q according to R
for job j € Q do
if j can be started currently then
pop j from Q
Start(j,Q, M, S, SkipTable)
else
Reserve j at earliest possible time
L« Q\ {5}
sort L according to R2
for job j' € L do
if 7/ can be started currently without delaying reservation
of j then
pop j' from Q
Start(j', Q, M, S, SkipTable)
end if
end for
break
end if
end for
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Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 [sonQaccording to Rn] Sort queue Q
2 for job j € @ do . .
3 if j can be started currently then Ie
4 pop j from Q Wlth POIlCY p
5 Start(j,Q, M, S, SkipTable)
6 else
7 Reserve j at earliest possible time
8  L<Q\{j)
9 sort L according to Ra2
10 for job j' € L do
11 if j/ can be started currently without delaying reservation
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for
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Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 sort Q according to Ry .
2 for job j € Q do
3 if j can be started currently then Ru n JObs that Can
4 p j from Q o .
s [ Start(j. Q. M, S, SkipTable) ] be |mmed|ate|y
6 else
7 Reserve j at earliest possible time
8 L<Q\{j} started
9 sort L according to Ra2
10 for job j' € L do
11 if j/ can be started currently without delaying reservation
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for
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Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 sort Q according to Ry
2 for job j € Q do
3 if j can be started currently then 1
1 I Reserve jobs that
5 Start(j,Q, M, S, SkipTable)
L T —— cannot be started
7 IReserve j at earliest possible tlme]
8 T+—Q\U 0 0
9 sort L acci)r(j;ing to R2 Im med Iately
10 for job j' € L do
11 if j/ can be started currently without delaying reservation
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for
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Traditional Scheduling

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

1 sort Q according to Ry
2 for job j € Q do
3 if j can be started currently then
4 pop j from Q
5 Start(j,Q, M, S, SkipTable)
6 else
7 Reserve j at earliest possible time
8 L« Q\{j}
9 sort L according to Ra2
10 for job j' € L do
11 if j/ can be started currently without delaying reservation|
of j then
12 pop j' from Q
13 Start(j',Q, M, S, SkipTable)
14 end if
15
16 break
17 end if
18 end for
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Traditional Scheduling = |\ =

Input Q < queue of jobs
M + ML model
S < current machine state
SkipTable +— Count of times skipped for each job
R1 + Queue ordering policy
Rz < Backfill ordering policy

sort Q according to R
for job j € Q do
if j can be started currently then
pop i from Q

|
2
3
4
2 [Start(j. Q,M, .S.SklpTable)] RUSH on Iy
';
9

else
Reserve j at earliest possible time o fro
LeQ\ () modifies the start
sort L according to Ra2
10 for job j' € L do .
11 if 7/ can be started currently without delk fU n Ctl O n
of j then
12 pop i’ from Q
13 g]_tlirrt( j',Q, M, S, SkipTable)|
14 en
15 end for
16 break
17 end if
18 end for
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Start Function

Input 5 < job
() < scheduler queue
M <+ ML model
S < current machine state
SkipTable <— Count of times skipped for each job

1 if SkipTable[j] < j.skip_threshold and

M(j,S) € variation labels then
SkipTable[j] < SkipTable[j] + 1
push j after front of )

else
launch job j

end if
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Proxy Apps

Variation-Aware Scheduling .

Start Function

Input 5 < job
() < scheduler queue
M <+ ML model

S < current machine state |f model redicts
SkipTable <— Count of times skipped fc P

if SkipTable[j] < j.skip_threshold and | Variation, then put job

M(j,S) € variation labels then back t f
SkipTable[j] < SkipTable[j] + 1 aCk on top of queue
push 7 after front of () )

else
launch job j

end if
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S,
\g Variability Predictor
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Variation-Aware Scheduling
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Start Function

Input 5 < job
() < scheduler queue
M <+ ML model
S < current machine state
SkipTable <— Count of times skipped for each job
1 if SkipTable[j]| < j.skip_threshold and
M(j,S) € variation labels then
SkipTable[j] < SkipTable[j] + 1
push 7 after front of @)

2
3
4 (else
5| launch job j Otherwise run
6 \end if .
job as normal
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Proxy Apps

Variation-Aware Scheduling .

Start Function

Input 5 < job
() < scheduler queue
M <+ ML model
S < current machine state
SkipTable <— Count of times skipped for each job

1 if SkipTable[;] < j.skip_threshold)and

M(3,S) € variation labels then imi i
2 kip'll'able[j] < SkipTable[;] + 1] Limit SI(IPS to Prevent
3 push j after front of Q ]Ob starvation
4 else
5 launch job j
6 end if
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& Variability Predictor |
M
Feature

Implementation

e Machine learning trained and exported with SciKit
o Extend Flux' to implement RUSH

| https://flux-framework.org/
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Experiments

e Run simulated workload on Quartz
o 512 node allocation
o ~190 jobs with | hour makespan
o Run FCFS+EASY (5x) and RUSH (5x)
o Record makespan, average wait time, and # jobs
experiencing variation
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Results: All Data All Applications

e Model trained on entire
dataset, running all apps

e Variation drops
significantly

RUSH reduces #
jobs with variation
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Results: All Data All Applications
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Model trained on entire
dataset, running all apps

RUSH reduces max
run time

RUSH reduces
range of run times
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Results: Partial Data Partial Applications

e Test generalizability
e Train model on AMG, Kripke, sw4lite,and SWFFT data
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Results: Partial Data Partial Applications

e Model trained on some
a—PPS, Whlle running Other Number of Occurrences of Variation (PDPA)

10 ................................................
FCFS
apps 8 _—

RUSH reduces #
jobs with variation

Number of jobs with variation

Laghos LBANN

““““““

B PSSG | 2N5 svstems crour 25



Results: Partial Data Partial Applications

e Model trained on some
apps, while running other

Variability in Application Performance (PDPA)

S o] —
aPPS - RUSH + PDPA C—1
RUSH reduces max ; g0l ] i —
— 6.0%
700 T — T

RUSH reduces 650 e _
range of run times
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Results: Partial Data Partial Applications

e Model trained on some

Variability in Application Performance (PDPA)

apps, while running other

FCES T—1
apps e RUSH + PDPA C—1
@ Fo 100 [ PRSI R _@ ......
€ — 1 _
o = 750 i
RUSH generalizes to apps ~ S 6.0%
. 700 m—— I
it has not seen =T =
050 Laghos LBANN
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Results: Throughput All 5 experiments in

paper had an
Comparison of Makespan Improvement |n

O ecrs wmm usH mmm makespan

Makespan (mins.)

ADAA ADPA PDPA WS SS

Experiment
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Conclusion

e Collect historical performance data
e Train machine learning models to predict variation
e Use variation prediction to schedule jobs

e Reduce max run time by up to 5.8% and average number
of runs with variation from 17 to 4
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