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Abstract

Performance analysis 1s an imperative part of performance tuning during the development

of parallel programs. Parallel execution traces enable in-depth analysis of the program’s
performance. Current trace analysis tools/workflows have some gaps:

® Most trace analysis tools support different formats and analyses

® GUI-based tools limit data exploration to their graphical views

We have developed Pipit, a Python-based tool, to fill in the gaps in trace-analysis:
Supports traces in different file formats (OTEF2, HPCToolkit, Projections, etc.)
Provides a uniform data structure in the form of a pandas DataFFrame

Provides a programmatic API to analyze traces

Provides interactive visual functions to display the traces
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Performance Analysis Case Studies Using Pipit

1. Finding the Most Idle Processes 2. Analyzing Overall Performance

We analyze traces of a Loimos (a Charm++-based epidemiology Here we analyze a trace of a Tortuga execution on 64 cores. We use pipit
simulator) execution on 64 processes. We want to find which processes to understand the machine utilization over time for the duration of the
are 1dling the most while the others are ovetloaded. Pipit’s idle_sime run. Pipit’s zzme_profile function provides an overview of the execution’s
function can help us with this task. We then plot a timeline filtered to the activity/utilization over time.

most and least 1dling processes.
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3. Pattern Detection

We can use pipit’s detect_pattern function to find recurring sets of events
in the trace. Below, we analyze a Tortuga execution on 16 cores. The

function uses matrix protile

function to automatically identity loops in the program.

4. Analyzing Communication

Here, we analyze the 32-process executions of ILaghos. We can use
pipit’s plot_comm_matrix and plot_commi_over_time functions to examine the
communication between ranks and over time respectively.
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tortuga_16 = pipit.Trace.from_otf2('./tortuga_16")
matches = tortuga_16.detect_pattern(window_size , iterations , metric='time.exc"')

tortuga_16.plot_timeline()
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Performance of Pipit

All the experiments in this section were performed on a single node of an HPC cluster
with a dual 64-core AMD EPYC 7763 processor.

Time spent by the Pipit OTF2 reader in reading traces of two different applications,
AMG (128 processes) and Laghos (256 processes).
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OTF2 reader and the comm_matrix function with AMG and LLaghos

traces of different sizes.

Install plplt with plp

Performance of Pipit operations
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Getting Started

plp 1nstall pilpit

Scan the QR code for pipit on GitHub
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