Pipit: Simplifying Parallel Trace Analysis

Alexander Movsesyan, Rakrish Dhakal, Aditya Ranjan, Jordan Marry, Onur Cankur, Abhinav Bhatele
Department of Computer Science, University of Maryland

Abstract

Performance analysis 1s an imperative part of performance tuning during the development

of parallel programs. Parallel execution traces enable in-depth analysis of the program’s
performance. Current trace analysis tools/workflows have some gaps:

® Most trace analysis tools support different formats and analyses

® GUI-based tools limit data exploration to their graphical views

We have developed Pipit, a Python-based tool, to fill in the gaps in trace-analysis:
Supports traces in different file formats (OTEF2, HPCToolkit, Projections, etc.)
Provides a uniform data structure in the form of a pandas DataFFrame

Provides a programmatic API to analyze traces

Provides interactive visual functions to display the traces

194.00 ms 195.00 ms 196.00 ms 197.00 ms 198.00 ms 199.00 ms

SN

Process 0 . int main(int, char**)

I | -
5 p

RO O @ A

IR

000 ¢ v

B MPI_Send

B VPI_Recv

B MPI_Finalize

I . MPI_Comm_size
. MPI_Comm_rank

¢ Instant event

Process 1

Traces: Time series data representing all the events that iestan o9, event Type;

Name, Process
, Enter, main(), 0

, Enter, foo(), 0

occur during the program’s execution o
. . 1

® When functions are entered and exited 3. Erter. VL. Sond: 0
5
8

, Leave, MPI_Send, 0
: Enter ha»r/\ 0@
18, Le Timestamp(ns) EventType Name Process

® When messages are exchanged between processes

® Different performance metrics (such as hardware

25, Le o 0 Enter main() 0
performance counters) I otonie | Ede e ;
2 3000000000 Enter MPI_Send 0
How does Pipit store trace data? R A o e SR
. . 4 8000000000 Enter baz() 0
® A pandas DataFrame: two-dimensional labeled s 130000000 Lewe baz) O
table-like data structure 6 25000000000 Leave foo() 0
® [very trace event is stored as a row in the DataFFrame 7 100000000050: Leme: kg 0
® Datalrame is sorted by event timestamps |
The Calling Context Tree R
® Represents caller-callee relationships between functions i
® Stored as a graph in Pipit, and each event in the
DatalFrame corresponds to some node in the calling \ / \I
ConteXt tree timefaol.'o;;:ons

Image from
https://en.wikipedia.org/wiki/Call graph

Performance Analysis Case Studies Using Pipit

1. Finding the Most Idle Processes 2. Analyzing Overall Performance

We analyze traces of a Loimos (a Charm++-based epidemiology Here we analyze a trace of a Tortuga execution on 64 cores. We use pipit
simulator) execution on 64 processes. We want to find which processes to understand the machine utilization over time for the duration of the
are 1dling the most while the others are ovetloaded. Pipit’s idle_sime run. Pipit’s zzme_profile function provides an overview of the execution’s
function can help us with this task. We then plot a timeline filtered to the activity/utilization over time.

most and least 1dling processes.

. 100.0% - B MPI_Alireduce
Time B MPI_Barrier
writeSingleField
12000ms 114000ms 116000 ms 1180.00 ms C 80.0%. = cor;put e
Process 21 L B Computation .g B advanceTimestep_RK3
Process 22 time-loo
Process 23 : | - Ltce ﬁ 60.0% 1 = slpn:catr(:ﬂPl\)adius
::gz::: gg 1 [] : | Computelnteractions() — MI:iI(_;\r/‘Vai:C —
- © Eu— en ostilvsinterraces
Process 6| R g oo 5528550 8 40.0% B MPI_irecy
Process 62 l [] [[[—_— EndOfDayStateUpdate() I MPI_lsend
Process 63 l [] [1 [[l 1 B ReceiveVisitMessages...me_|) O\o 20.0% 4 setGhostCvslnterfaces
 Receivelnteractions(...me_0) e o gradC2C .
computeVelocityGradient
0.0% - ‘ MPI_Reduce
loimos_64 = pipit.Trace. from_p roject ions("'. /loimos_64") e 0.00 s 0.50 s 1.00 s 1.50 s 200s 250 s 300 s i :I:I_Bcast
idle_times = loimos_64.idle time() . B MPI_Init
idle_times = idle_times.sort_values(by=['Idle Time'], ascending=False) Time
bad_procs = idle_times["Process"].head(4) o =< o
do0d. hrocs = idlle tineslProcess] tail(4) tortuga_64 = pipit.Trace.from_otf2("tortuga_64")
loimos_64.filter("Process", "in", bad_procs + good _procs).plot_timeline() tortuga_64.plot_time_profile(num_bins=100, normalized=True)

3. Pattern Detection

We can use pipit’s detect_pattern function to find recurring sets of events
in the trace. Below, we analyze a Tortuga execution on 16 cores. The

function uses matrix protile

function to automatically identity loops in the program.

4. Analyzing Communication

Here, we analyze the 32-process executions of ILaghos. We can use
pipit’s plot_comm_matrix and plot_commi_over_time functions to examine the
communication between ranks and over time respectively.

I 1000.00 kB
100.00 kB

to detect patterns in the trace. We use this

Sender Sender
0 2 4 6 810121416 182022242628 30 0 2 46 81012141618202224262830

6.00 MB

5.00 MB

4.00 M8 10.00 kB

2.00 MB
I 1.00 MB
0.00 MB

laghos_32 = pipit.Trace.from_otf2('./laghos_32")
laghos_32.plot_comm_matrix(mapping="'1linear")

0.10 kB

0.01 kB

0.00 kB

laghos_32.plot_comm_matrix(mapping="'1log"')

25.00 MB

20.00 MB 1

15.00 MB

le7
4_
m
£
£ 27
=
0- |
4 i
I
Q [
= 3 - i
O i
a I
X 2 - :
I | i I
=] - : I
!
0

250 500

tortuga_16 = pipit.Trace.from_otf2('./tortuga_16")
matches = tortuga_16.detect_pattern(window_size , iterations , metric='time.exc"')

tortuga_16.plot_timeline()

Acknowledgements

10.00 MB

750 1000 1250 1500 1750 2000 _
Index 5.00 MB]

0.00 MB

Total volume sent

0.00 s 20.00 s 40.00 s 60.00 s 80.00 s
Time

laghos_32.plot_comm_over_time()

This material is based upon work supported in part by the National Science Foundation under Grant No. 2047120,

Performance of Pipit

All the experiments in this section were performed on a single node of an HPC cluster
with a dual 64-core AMD EPYC 7763 processor.

Time spent by the Pipit OTF2 reader in reading traces of two different applications,
AMG (128 processes) and Laghos (256 processes).

Runtime (s)

o
»

PR

Strong scaling of OTF2 reader

- AMG 128
—&— Laghos 256

Time spent in the

i 2 4 8 16 32 64
Number of cores

OTF2 reader and the comm_matrix function with AMG and LLaghos

traces of different sizes.

Install plplt with plp

Performance of Pipit operations

i M- ReadingAMG trace ~~ _~A
—&— Reading Laghos trace
2501 .m- AMG comm_matrix
~#— Laghos comm_matrix
@ 200 -
)
I L1 S s i A .
=
- ;
-
OF 100 formremmemmemm e
R
0 H
0 50 100 150 200 250

Number of thousands of rows in DataFrame

Getting Started

plp 1nstall pilpit

Scan the QR code for pipit on GitHub

References

[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin ,John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for performance analysis of optimized parallel programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 685-701.

[2] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Kniipfer, Wolfgang E Nagel, and Felix Wolf. 2012. Open trace format 2: The next generation of scalable trace formats and support libraties. In Applications, Tools and Techniques on the Road to Exascale Computing. IOS Press,
481-490.

[3] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar. 2006. Scaling Applications to Massively Parallel Machines Using Projections Performance Analysis Tool. In Future Generation Computer Systems Special Issue on: Large-Scale System Performance Modeling and Analysis, Vol.
22. 347-358.

[4] Wes McKinney. 2017. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media.

https://en.wikipedia.org/wiki/Call_graph

