
Acknowledgements References

Performance analysis is an imperative part of performance tuning during the development
of parallel programs. Parallel execution traces enable in-depth analysis of the program’s
performance. Current trace analysis tools/workflows have some gaps:

● Most trace analysis tools support different formats and analyses
● GUI-based tools limit data exploration to their graphical views

We have developed Pipit, a Python-based tool, to fill in the gaps in trace-analysis:
● Supports traces in different file formats (OTF2, HPCToolkit, Projections, etc.)
● Provides a uniform data structure in the form of a pandas DataFrame
● Provides a programmatic API to analyze traces
● Provides interactive visual functions to display the traces

Alexander Movsesyan, Rakrish Dhakal, Aditya Ranjan, Jordan Marry, Onur Cankur, Abhinav Bhatele
Department of Computer Science, University of Maryland

Traces: Time series data representing all the events that
occur during the program’s execution
● When functions are entered and exited
● When messages are exchanged between processes
● Different performance metrics (such as hardware

performance counters)

How does Pipit store trace data?
● A pandas DataFrame: two-dimensional labeled

table-like data structure
● Every trace event is stored as a row in the DataFrame
● DataFrame is sorted by event timestamps

The Calling Context Tree
● Represents caller-callee relationships between functions
● Stored as a graph in Pipit, and each event in the

DataFrame corresponds to some node in the calling
context tree

We analyze traces of a Loimos (a Charm++-based epidemiology
simulator) execution on 64 processes. We want to find which processes
are idling the most while the others are overloaded. Pipit’s idle_time
function can help us with this task. We then plot a timeline filtered to the
most and least idling processes.

We can use pipit’s detect_pattern function to find recurring sets of events
in the trace. Below, we analyze a Tortuga execution on 16 cores. The
function uses matrix profile to detect patterns in the trace. We use this
function to automatically identify loops in the program.

Here we analyze a trace of a Tortuga execution on 64 cores. We use pipit
to understand the machine utilization over time for the duration of the
run. Pipit’s time_profile function provides an overview of the execution’s
activity/utilization over time.

Here, we analyze the 32-process executions of Laghos. We can use
pipit’s plot_comm_matrix and plot_comm_over_time functions to examine the
communication between ranks and over time respectively.

1. Finding the Most Idle Processes

3. Pattern Detection

2. Analyzing Overall Performance

4. Analyzing Communication

All the experiments in this section were performed on a single node of an HPC cluster
with a dual 64-core AMD EPYC 7763 processor.

Time spent by the Pipit OTF2 reader in reading traces of two different applications,
AMG (128 processes) and Laghos (256 processes).

Time spent in the OTF2 reader and the comm_matrix function with AMG and Laghos
traces of different sizes.

Install pipit with pip

pip install pipit

Scan the QR code for pipit on GitHubImage from
https://en.wikipedia.org/wiki/Call_graph

Abstract

Background and Pipit’s Structure

Performance Analysis Case Studies Using Pipit Performance of Pipit

Getting Started

This material is based upon work supported in part by the National Science Foundation under Grant No. 2047120.
[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin ,John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for performance analysis of optimized parallel programs. Concurrency and Computation: Practice and Experience 22, 6 (2010), 685–701.
[2] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E Nagel, and Felix Wolf. 2012. Open trace format 2: The next generation of scalable trace formats and support libraries. In Applications, Tools and Techniques on the Road to Exascale Computing. IOS Press,
481–490.
[3] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar. 2006. Scaling Applications to Massively Parallel Machines Using Projections Performance Analysis Tool. In Future Generation Computer Systems Special Issue on: Large-Scale System Performance Modeling and Analysis, Vol.
22. 347–358.
[4] Wes McKinney. 2017. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media.

Pipit: Simplifying Parallel Trace Analysis

https://en.wikipedia.org/wiki/Call_graph

