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Abstract—Applications can experience significant performance
differences when run on different architectures. For example,
GPUs are often utilized to accelerate an application over its CPU
implementation. Understanding how performance changes across
platforms is vital to the design of hardware, systems software,
and performance critical applications. However, modelling the
relationship between systems and performance is difficult as
run time data needs to be collected on each platform. In this
abstract, we present a methodology for predicting the relative
performance of an application across multiple systems using
profiled performance counters. This model will be useful for inte-
grating high performance computing software into heterogeneous
environments such as cloud systems.

Index Terms—performance, performance modelling, deep
learning

Multi-staged, pipelined workflows that combine high per-
formance computing (HPC) simulations, machine learning,
and data analytics are becoming increasingly popular within
scientific computing research. The tasks in these workflows
often span a variety of heterogeneous resources and compute
requirements. Thus, running these workflows in cloud environ-
ments is desirable as their hardware and software is designed
to facilitate large numbers of tasks across heterogeneous
resources. However, effectively utilizing cloud is difficult as
HPC software is not well supported. One means to bridge this
gap is multi-resource task scheduling.

Scheduling jobs efficiently across resources is far from
trivial. It requires a model for how applications will behave
across the spectrum of available resources. When a scheduler
has access to multiple resource types it can more efficiently
schedule jobs across them. However, to effectively make use
of these available resources it needs needs to know the relative
performance of a job across them. Typically runtime estimates
are provided to a scheduler by the user as a max wall-time.
As the number of resources available to a scheduler grows,
this becomes impractical to require from the user. Thus, some
performance model has to provide these estimates of relative
performance to the scheduler. With these it is then able to
decide which resources and how much of them to allocate.

We propose a machine learning based methodology that
can learn to predict relative performance across a set of
platforms based on profiled system counters. We first learn
a latent space that captures information about the relationship
of performance counters across a set of platforms. Then we
use counters mapped into this latent space to predict relative
performance. By learning a latent space first it is simple to

TABLE I
TABLE OF RECORDED PERFORMANCE COUNTERS. DATA LOCALITY AND

MEMORY RELATED COUNTERS ARE IN BLUE. CONTROL FLOW AND
PARALLELISM RELATED COUNTERS ARE IN RED. I/O RELATED COUNTERS

ARE IN GREEN.

Counter

# Instructions
Ratio Int Arith. to Total Instr.

Ratio Float Arith. to Total Instr.
Ratio Mem. to Total Instr.

Ratio Caches Misses to Hits
# Page Levels
# Page Faults

GPU2CPU & CPU2GPU Bandwidth
Ratio Control to Total Instr.

Ratio Indep. Instr. to Total Instr.
Ratio Branch Misses to Branch Instr.

# Threads / Streams
Warp Blocks

IO Bytes Read/Written
IO File Descriptors Opened

continue learning different downstream tasks with this data.

Fig. 1. An overview of the VAE training. The VAE is trained on performance
counter data and over a range of epochs it receives feedback from the down-
stream DNN regressor. Additionally, the decoder update weight is changed
gradually with a KL-divergence-based regularization scheme.

Before we train the model we first collect data from a
variety of applications. Profiling counters for the gpu-enabled
applications in the e4s 1 and ecp-proxy-applications 2 suites
are recorded on four different systems at Lawrence Liver-
more National Laboratory (LLNL): Quartz, Ruby, Corona,

1https://e4s-project.github.io/index.html
2https://proxyapps.exascaleproject.org/

https://e4s-project.github.io/index.html
https://proxyapps.exascaleproject.org/


and Lassen. Quartz and Ruby are CPU based machines with
Intel Xeon E5-2695 v4 and CLX-8276L CPUs, respectively.
Corona and Lassen are GPU enabled machines with AMD
MI50 and NVIDIA V100 GPUs, respectively. Performance
counters are collected with HPCToolkit [1] and PAPI [2] and
are listed in Table I. Figure 2 presents the distribution of
relative performance across the four machines in the data set
and Figure 3 shows the relative performances for a particular
application Laghos [3].

Fig. 2. The distribution of relative performance numbers in our dataset across
each machine.

Fig. 3. An example relative performance vector for the Laghos [3] proxy
application.

Using this data set, a variational auto-encoder (VAE), as
highlighted in Figure 1, is trained to learn a latent represen-
tation of the counter data. The VAE decoder is calibrated [4]
on just the CPU data set before training on the entire data
set. Additionally, the KL-divergence loss is weighted with a
changing regularization parameter. For several iterations the
loss from the downstream regression task is also included in
the VAE loss. The latent representation learned by the VAE is
then used to train a 3-layer deep neural network (DNN) that

predicts the relative performance value across the four systems
(∈ R4). Each layer of the DNN has 1024 hidden units.

Fig. 4. Percentage of samples that the DNN generates a relative performance
vector in the correct order for.

With this training setup and an 80-20 cross-validation split
the DNN trains to a final R2 score of 0.81. A baseline
RandomForest regressor achieves R2 = 0.68. Most notably the
DNN predicts the vector with the correct ordering for ≈ 91%
of samples (see Figure 4). Since ≈ 80% of the data set is in
the order (Quartz, Ruby, Corona, Lassen) we mark this as the
positive outcome and look the specificity/sensitivity. Figure 5
shows that the model performs well above random guessing
the order based on priors.

In conclusion we have presented a methodology for predict-
ing relative performance across platforms based on profiled
counters. In future work we will focus on improving the final
R2 score, develop transfer learning based methods to model
new resource sets with few samples, and apply the model to
end applications such as multi-resource job scheduling.

Fig. 5. ROC curve for DNN. Here a run with order (Quartz, Ruby, Corona,
Lassen) is considered a positive sample. The red line represents the baseline
performance of a random classifier.
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