
We added Gotcha support to two I/O performance tools, Recorder and Darshan.
We present three benefits our work brings to HPC tools:

Yiheng Xu†, Kathryn Mohror*, Hariharan Devarajan*, Cameron Stanavige*, Abhinav Bhatele†
†University of Maryland, College Park *Lawrence Livermore National Laboratory

Abstract

• Users often want to run applications linked with multiple tools.
• Tools here refers primarily to performance tools or user-level libraries that

work by intercepting functions.
• Currently, applications cannot run with more than one tool that intercept a

common set of functions in a single run.
• Using multiple tools in the same run can avoid having to run the application

more than once. It can thus save time and produce more temporally aligned
profiles.

• Our work makes it possible to chain tools together, making profiles more
comparable, and saving time for runs with different tools.

Motivation

• Most tools define wrappers that override
functions to be intercepted.

• Runtime finds wrappers through the Global
Offset Table[4]. When a function is needed,
the pointer on the top will be used.

• However, using multiple tools that intercept
a common set of functions in the same run
can lead to erroneous results.

• When multiple tools define wrappers for the
same function, the system decides their
order in GOT and which one to call in a
non-deterministic way.

Methodology

[1] C. Wang, J. Sun, M. Snir, K. Mohror and E. Gonsiorowski, "Recorder 2.0: Efficient Parallel I/O
Tracing and Analysis," IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020.
[2] Darshan. https://www.mcs.anl.gov/research/projects/darshan/
[3] Gotcha. https://gotcha.readthedocs.io/en/latest/
[4] Linux Foundation. https://refspecs.linuxfoundation.org/
[5] UnifyFS. https://unifyfs.readthedocs.io/en/latest/

Results (continued)

• Tested with two benchmarks,
MACSio and IOR.

• We run them with Recorder
and Darshan loaded separately
and then together.

• Pick some common metrics
and check the difference
between Darshan and
Recorder reports.

• The difference when running
them together is much less
than that when running them
separately.

References

• To solve this problem, we utilize a library called Gotcha, which lets users
explicitly define wrapper functions and bind them to functions to be intercepted.

• Gotcha provides APIs for users to create bindings, set priorities, and get the real
(or next) function that is wrapped.

• Issue: Most tools intercept MPI_Init and have their initialization in it. To use
Gotcha, each tool has to initialize Gotcha as well. But we cannot put Gotcha
initialization in MPI_Init, otherwise it won’t be wrapped by Gotcha.

• Solution: constructors of shared libraries.
• The constructor runs when the shared library is loaded, typically during program

startup. We defined a constructor for each tool and put Gotcha initialization in it.

Global Offset Table
(GOT)

fwrite@wrapper1.so

fwrite@wrapper2.so

fwrite@wrapperN.so

fwrite@libc.so.6

Results

Conclusion
• Utilized Gotcha to chain tools together. We have successfully made Recorder

and Darshan Gotcha enabled.
• Demonstrated the benefit of work when using multiple tools: being able to

measure tools’ performance, reducing the effect of system noise for the same
run with different tools, and saving time.

• Future: Formulate a standard way to make tools Gotcha enabled. See how
performance overheads change with more tools chained together.

Fig 1. Recorder and Darshan are two performance tools that record I/O
data at different granularities.

Fig 2. Modified control flow of an end-user application when using a
Gotcha enabled tool with it.

Fig 3. Performance data captured by
Recorder for UnifyFS[5] and Darshan
when the tools are chained together.

Fig 4. Difference between common
metrics (“time of longest write on rank
0”) reported for the same application
when the tools are used separately
versus together in the same run.

Benefit 3: Saves time and effort for running experiments with multiple tools.

• The time and resources wasted on doing duplicated work can be significant.
• It’s straightforward that time needed for using tools together in a same run is

about n times shorter than running them separately with n tools.

Fig 5. Time spent in getting both Recorder & Darshan profiles when the
tools are used separately versus used together in the same run.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-825920.

• Different tools are often used to profile the same application
• Each run can only use one tool at one time, which means people have to run

repetitively to use these tools separately.
• System noise makes profiles from tools for the same job not able to

complement each other.

Benefit 2: Make profiles for a same run more comparable by eliminating
system noises across runs.

Application

Shared Lib
Constructor

Gotcha_fwrite_wrapper

__attribute__((constructor))

Tool

Benefit 1: Ability to chain tools and
libraries together.

• Runtime environment calls the constructor, which initializes Gotcha so that
functions can be wrapped.

• Then the actual application starts to run. MPI_Init is redirected to tools’
MPI_Init wrappers (chained), where each tool initializes. Similarly, when
other functions are called, each tool intercepts them one by one.

• For each tool that needs to be chained, we modify its source code to define
Gotcha wrappers and wrappee handles for all functions it intercepts.

• Then define a constructor, which uses Gotcha to bind wrappers with functions
to be intercepted, and set the priority for it to control the ordering of tools.

• A program linked with Recorder,
Darshan and UnifyFS (a user-level
file system)

• Fig 3 shows Recorder is able to
catch Darshan’s work and I/O to
a new directory mounted by
UnifyFS.

• It provides a simple way to check
overheads of a tool (Darshan
here)

Chaining Multiple Tools and Libraries Using Gotcha

main

MPI_Init

fwrite

Gotcha_get_
wrappee

__real_fwrite

Gotcha Initialization

Tool Initialization

