
Scalable Comparative Visualization of Ensembles of Call Graphs using CallFlow
Suraj P. Kesavan1, Harsh Bhatia2, Abhinav Bhatele3, Stephanie Brink2, Olga Pearce2, Todd Gamblin2, Peer-Timo Bremer2, Kwan-Liu Ma1

1 University of California, Davis 2 Lawrence Livermore National Laboratory 3 University of Maryland, College Park

Motivation Construction of Ensemble Super Graph

Conclusion

Performance trends in LULESH

Comparison of run-to-run slowdowns

Pairwise Comparison of Profiles using Diff View

Ø Diff View highlights the slower modules, and communicates the relative degree of performance
degradation easily

Ø Red hues highlight code regions that cause a performance slow down (e.g., CalcForce and CalcLagrange
in (a), and MPI in (b)).

Ø Green hues highlight the performance speedup (e.g., MPI in (a), and CalcForce, and CalcLagrange in (b)).

References
[1] Nguyen, H.T.P., et al. “Visualizing Hierarchical Performance Profiles of Parallel Codes using CallFlow.” IEEE Trans. on Vis. and Comp, Graph. (2019).
[2] Boehme, D., et al. “Caliper: performance introspection for HPC software stacks.” SC'16: Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis. 2016.
[3] Adhianto, L., et al. "HPCToolkit: Tools for performance analysis of optimized parallel programs." Concurrency and Computation: Practice and Experience 22.6 (2010): 685-701.
[4] Bhatele, A., et al. "Hatchet: pruning the overgrowth in parallel profiles." Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis. 2019.
[5] Karlin, I., et al. "Exploring traditional and emerging parallel programming models using a proxy application." 2013 IEEE 27th Int. Symp. on Parallel and Distributed Processing. 2013.

(a) 64-cores−27-cores (b) 216-cores−125-cores

Ø Splitting operation reveals the most expensive call sites (e.g., MPI_Allreduce, and CalcForceForNodes).
Ø The text guides reveal 2 cases of out-of-order runtimes (with respect to increasing core count) for MPI and

CalcForce libraries.

github.com/LLNL/CallFlow

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under
contract DE-AC52-07NA27344 and grant DE-SC0014917. LLNL-POST-813361

CallFlow’s Visual Interface

Gradients: Metric distribution across runs
Height: Execution runtime.
Border/Outline: Selected metric
Text-guides (left): Number of runs
Text-guides (right): Execution runtime
Target guides: Target run in ensemble

Runtime Distribution

Ensemble Super Graph

Call Site Correspondence

Fig. 1: Construction of ensemble super graph. Each node in graph represents a profiled region (e.g., main, foo), and the
performance metrics ([inclusive runtime]:[exclusive runtime]). Each region is tagged to belong to a module/library
(e.g., LIB1, LIB2)

Fig. 3: Diff view: Pairwise differences (subtract operation) of the runtimes between 2 selected runs
(i.e., (a) 64 vs 27, (b) 216 vs 125 cores) are colored using a green-red color map.

Fig. 4: Ensemble view: We perform CallFlow’s split operation and reveal the nodes inside MPI and
CalcForce library to investigate the out-of-order runtimes (i.e., between 27, 64, 125, and 216 cores).

Fig. 2: Screenshot of CallFlow’s interface: Visualization of the ensemble comprising of 228 Caliper performance profiles.

Visual Encoding of a
SuperNode

Ø Large-scale parallel applications often support a variety of optimization parameters and
programmers typically run the same code multiple times to understand how different
application parameters and/or initial conditions may affect the performance.

Ø It is important to compare multiple executions and analyze the performance variation
across executions.

Ø Visualization of performance metrics along with the dynamic Calling Context Tree (CCT)
can play an important role in detecting and understanding the true causes of bottlenecks.

Ø However, existing tools are constrained to analyzing a single CCT, thereby limiting the
usability for analysis on large ensembles of profiles.

Performance profiles such as those collected from HPCToolkit [2] and Caliper [3] are converted to an
ensemble super graph.

We have extended CallFlow [1] to create a scalable, interactive visual analytic tool to study
ensembles of CCTs. Working closely with domain experts, we formulate the definition of super
graph for an ensemble of profiles and map them to concrete visual mediums to support
comparative analysis.

We demonstrate 2 comparison studies using LULESH[5] to study effects of weak scaling on
performance across an ensemble of 1, 8, 27, 64, 125, 216, 343, and 512 cores.

CallFlow [1] is an interactive visual analysis tool that provides a high-level overview of CCTs
together with semantic refinement operations to progressively explore hierarchical calling
contexts. CallFlow introduces a construct called super graph, created by aggregating the nodes
of a CCT based on the semantic attributes, e.g., the library name, module name, or file name.

In this work, we extend CallFlow’s visual design to scale performance analysis on large
ensembles using ensemble super graph. By combining data analysis and visualization,
CallFlow’s visual interface along with ensemble super graph representation enables
comparison of the performance variability across ensembles.

CallFlow – What’s new?

Metric Correlations

Supernode Hierarchy

Ø Visualizes the distribution in three modes:
call site, call graph, and MPI rank.

Ø Target run’s distribution (in green) is overlaid over the
ensemble.

Ø Visualizes the aggregated runtimes (histograms) using
white-red color gradients.

Ø Text and target guides provide detailed information of
the bins in the aggregation.

Ø Double-clicking on the text guides recalculates the
ensemble super graph of the selected subset.

Ø Enumerates the call sites inside a selected supernode.

Ø Boxplots indicate the spread in the variation of runtimes.

Ø Visualizes outliers as circles placed along the interquartile
range (IQR).

Ø Enables the user to perform graph splitting operations

Ø Shows correlations between any two metrics across
ensemble members.

Ø Colored dots help in comparing members of a target run
to its ensemble.

Ø Visualizes the caller-callee relationship of call sites inside
a supernode.

