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" |ncreasing number of GPU-accelerated applications
targeting execution at scale
= Existing performance models
= Only focus on either GPU kernels or MPI
communication
= Or are too specialized for one application
" Goal: “Develop a general, accurate, fast end-to-end
performance model for distributed GPU applications”

Methodology
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" Profiling-based, black-box approach

= Part 1: Modeling GPU kernels!!]
1. Obtain GPU parameters with microbenchmarks

Tesla V100 sl Vloo.
Parameter File
Micro-
benchmarks
Tesla P100 et PO
Parameter File

2. Obtain kernel parameters with a profiling run
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3. Generate performance predictions
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= Reduction in profiling time (compared to [1])
" Aggregated metric profiling runs
= Limited profiling scope to time stepping loop
= Selective profiling of kernels that constitute
99% (or some chosen value) of total GPU time
" 4+ hours - 30 minutes for MiniFE
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Methodology (cont.)

= Part 2: Modeling MPI communication
" |Inspect code & identify communication pattern
= Latency-bandwidth model!?! for simple P2P
= Recursive doubling!3! for collective communication

<Fig 1. 3D Halo Exchange>
(8 MPI ranks, 7 neighbors)

= Modeling halo exchange communication
= QOccurs in many scientific applications
"= MPI_Irecvs & MPI_Isends (for all neighbors) ->
MPI_Waitall (takes up most of the time)
= Cannot be modeled with pingpong benchmark
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<Fig 2. MPI_Waitall Time in 3D Halo Exchange Benchmark>
(LLNL Lassen, 2 ranks, 1 per node, lines: maximum number of neighbors)
= Developed 3D halo exchange benchmark
= Uses only up to 2 nodes, combining both intra-
node and inter-node results
" Generalized equation to be derived
= # of neighbors: 1 (2 ranks) - 26 (64+ ranks)

= Part 3: Build end-to-end performance model
= Overhead
" Time spent on operations other than profiled
GPU kernels and MPI communication
= Assume it stays constant as we scale
= Application runtime = Overhead + GPU kernel
time + MPl communication time
= Model can be applied to larger scale to predict
scalability
" Currently limited to weak scaling
" GPU kernel times do not change as we scale
" Only MPI communication affects scalability

Target Application

" MiniFE: unstructured implicit finite element code

" Main iteration loop

m matvec() dot() —

" dot(): vector dot product
* GPU kernel (DOT)

= : overhead

= MPI_Allreduce
= waxpby(): w = ax + by
* GPU kernel (WAXPBY)
" matvec(): matrix-vector product

= Halo communication
* GPU kernel (MATVEC)

= Platform 1: LLNL Lassen
= 4 NVIDIA Tesla V100 GPUs/node, up to 16 GPUs
= Weak scaling MiniFE: measured times
" Constant overhead and GPU kernel times
" |ncrease in allreduce and halo communication times
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<Fig 3. GPU Kernel Prediction Error on Tesla V100>

== MPI allreduce actual == MPI allreduce pred. MPI halo actual == MPI halo pred.

== |teration actual == |teration pred.
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<Fig 4. Actual & Predicted Times for MPI Communication and Iteration>

Results (cont.)

= Performance predictions
= Overhead assumed constant: 820 us
= GPU kernel times using roofline model
= Allreduce time = 22.1 * N, 4o, + 146
* Halo exchange time computed from benchmark

. Tlteration = loverhead + Tkernels + Tallreduce + Thalo

= Platform 2: PSC Bridges
= 2 NVIDIA Tesla P100 GPUs/node, up to 8 GPUs
= Similar weak scaling behavior & good prediction
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<Fig 5. GPU Kernel Prediction Error on Tesla P100>
== MPI allreduce actual == MPI allreduce pred. MPI halo actual == MPI halo pred.
== |teration actual == |teration pred.
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<Fig 6. Actual & Predicted Times for MPI Communication & Iteration>

= Performance predictions
= Overhead: 1001 us

= Allreduce time=66.4 * N — 68 (0 at 1 node)

nodes

" Improve GPU modeling
" |Integrate data transfer model
= Support use of CUDA-aware MPIl and GPUDirect
" |ncorporate L1 cache effects
* Improve modeling for MPI collectives and halo
communication
= Generalize halo exchange benchmark and improve
accuracy
= Model strong scaling behavior
= Evaluate more applications on more platforms
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