B Lawrence Livermore

National Laboratory

Fast Profiling-based Performance Modeling of Distributed GPU Applications

L L L

o] Dl | B 1 g |

" |ncreasing number of GPU-accelerated applications
targeting execution at scale
= Existing performance models
= Only focus on either GPU kernels or MPI
communication
= Or are too specialized for one application
" Goal: “Develop a general, accurate, fast end-to-end
performance model for distributed GPU applications”

Methodology

MPI Other

GPU kernels + (Overhead)

communication

End-to-end Performance Model

" Profiling-based, black-box approach

= Part 1: Modeling GPU kernels!!]
1. Obtain GPU parameters with microbenchmarks

Tesla V100 sl Vloo.
Parameter File
Micro-
benchmarks
Tesla P100 et PO
Parameter File

2. Obtain kernel parameters with a profiling run

Application Kernel
——» ——»
(with GPU kernels) Tesla V100 Parameter File

3. Generate performance predictions

Tesla v1oq TesIa.V?OO
Parameter File Prediction
Kernel
. +
Parameter File
Tesla P100. Tesla.Pl.OO
Parameter File Prediction

= Reduction in profiling time (compared to [1])
" Aggregated metric profiling runs
= Limited profiling scope to time stepping loop
= Selective profiling of kernels that constitute
99% (or some chosen value) of total GPU time
" 4+ hours - 30 minutes for MiniFE

Jaemin Choi'?, Abhinav Bhatele? (advisor), David Richards? (advisor)

tUniversity of Illinois Urbana-Champaign, 2Lawrence Livermore National Laboratory

Methodology (cont.)

= Part 2: Modeling MPI communication
" |Inspect code & identify communication pattern
= Latency-bandwidth model!?! for simple P2P
= Recursive doubling!3! for collective communication

<Fig 1. 3D Halo Exchange>
(8 MPI ranks, 7 neighbors)

= Modeling halo exchange communication
= QOccurs in many scientific applications
"= MPI_Irecvs & MPI_Isends (for all neighbors) ->
MPI_Waitall (takes up most of the time)
= Cannot be modeled with pingpong benchmark

® 1 O 7 @11 @ 17 @ 26
10,000.00

1,000.00

100.00

Time (us)

10.00 /

1.00
1 10 100 1000

Cell Dimension

<Fig 2. MPI_Waitall Time in 3D Halo Exchange Benchmark>
(LLNL Lassen, 2 ranks, 1 per node, lines: maximum number of neighbors)
= Developed 3D halo exchange benchmark
= Uses only up to 2 nodes, combining both intra-
node and inter-node results
" Generalized equation to be derived
= # of neighbors: 1 (2 ranks) - 26 (64+ ranks)

= Part 3: Build end-to-end performance model
= Overhead
" Time spent on operations other than profiled
GPU kernels and MPI communication
= Assume it stays constant as we scale
= Application runtime = Overhead + GPU kernel
time + MPl communication time
= Model can be applied to larger scale to predict
scalability
" Currently limited to weak scaling
" GPU kernel times do not change as we scale
" Only MPI communication affects scalability

Target Application

" MiniFE: unstructured implicit finite element code

" Main iteration loop

m matvec() dot() —

" dot(): vector dot product
* GPU kernel (DOT)

= : overhead

= MPI_Allreduce
= waxpby(): w = ax + by
* GPU kernel (WAXPBY)
" matvec(): matrix-vector product

= Halo communication
* GPU kernel (MATVEC)

= Platform 1: LLNL Lassen
= 4 NVIDIA Tesla V100 GPUs/node, up to 16 GPUs
= Weak scaling MiniFE: measured times
" Constant overhead and GPU kernel times
" |ncrease in allreduce and halo communication times

20 GPU Error: 8-10% |
&\o/ 10
: I N e
L0 0
§ Actual: 117 us 227 us 3,384 us
= Predicted: 128 us 250 us 3,658 us
£ 20
DOT WAXPBY MATVEC

<Fig 3. GPU Kernel Prediction Error on Tesla V100>

== MPI allreduce actual == MPI allreduce pred. MPI halo actual == MPI halo pred.

== |teration actual == |teration pred.

1000 6000

750 Iteration Error: 6-7%
: 4000

Largest contribution to error: MATVEC kernel

500

250 |

. MPIlError: 1-17% ;
1 2 3 4

Number of Nodes

MPI Times (us)
lteration Time (us)

2000

<Fig 4. Actual & Predicted Times for MPI Communication and Iteration>

Results (cont.)

= Performance predictions
= Overhead assumed constant: 820 us
= GPU kernel times using roofline model
= Allreduce time = 22.1 * N, 4o, + 146
* Halo exchange time computed from benchmark

. Tlteration = loverhead + Tkernels + Tallreduce + Thalo

= Platform 2: PSC Bridges
= 2 NVIDIA Tesla P100 GPUs/node, up to 8 GPUs
= Similar weak scaling behavior & good prediction

dCCuracy
- 7 GPU Error: 2-6%
g 10
o
E L, T ... ——
(a
9 Actual: 173 us 348 us 5,101 us
% Predicted: 183 us 355 us 5,203 us
= -20
& DOT WAXPBY MATVEC
<Fig 5. GPU Kernel Prediction Error on Tesla P100>
== MPI allreduce actual == MPI allreduce pred. MPI halo actual == MPI halo pred.
== |teration actual == |teration pred.
1000 8000
—
750 Iteration Error: 1-2% | 000
' %)
El Largest contribution to error: MPI halo comm <
=
£ 500 4000 =
= S
o =
= 0 ©
MPI Error: 1-21% | g

250

Number of Nodes

<Fig 6. Actual & Predicted Times for MPI Communication & Iteration>

= Performance predictions
= Overhead: 1001 us

= Allreduce time=66.4 * N — 68 (0 at 1 node)

nodes

" Improve GPU modeling
" |Integrate data transfer model
= Support use of CUDA-aware MPIl and GPUDirect
" |ncorporate L1 cache effects
* Improve modeling for MPI collectives and halo
communication
= Generalize halo exchange benchmark and improve
accuracy
= Model strong scaling behavior
= Evaluate more applications on more platforms

[1] Konstantinidis, E. and Cotronis, Y. (2017). A quantitative roofline model for GPU kernel performance estimation using micro-benchmarks and hardware metric profiling. Journal of Parallel and Distributed Computing, 107, pp.37-56. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work also used the Extreme
Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges system, which is

supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

[2] Hoefler, T., Gropp, W., Thakur, R., Traff, J. L. (2010). Toward Performance Models of MPI Implementations for Understanding Application Scaling Issues. Recent Advances in the Message Passing Interface. EuroMPI 2010. Lecture Notes in Computer Science, pp.21-30.
[3] Thakur R., Gropp W. (2003). Improving the Performance of Collective Operations in MPICH. Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2003. Lecture Notes in Computer Science, vol 2840.

