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Abstract—Parallel training of neural networks at scale is chal-
lenging due to significant overheads arising from communication.
Recently, deep learning researchers have developed a variety of
pruning algorithms that are capable of pruning (i.e. setting to
zero) 80-90% of the parameters in a neural network to yield
sparse subnetworks that equal the accuracy of the unpruned
parent network. In this work, we propose a novel approach
that exploits these sparse subnetworks to optimize the memory
utilization and communication in two popular algorithms for
parallel deep learning namely – data and inter-layer parallelism.
We integrate our approach into AxoNN, a highly scalable frame-
work for parallel deep learning that relies on data and inter-layer
parallelism, and demonstrate the reduction in communication
time and memory utilization. On 512 NVIDIA V100 GPUs, our
optimizations reduce the memory consumption of a 2.7 billion
parameter model by 74%, and the total communication time
by 40%, thus providing an overall speedup of 34% over AxoNN,
32% over DeepSpeed-3D and 46% over Sputnik, a sparse matrix
computation baseline.

Index Terms—lottery ticket hypothesis, sparse computations,
GPUs, parallel deep learning, memory optimizations

I. INTRODUCTION

Deep learning researchers have observed that increasing
the size of a neural network almost always leads to better
generalization i.e., accuracies on test data [1]. This has led
to the development of neural architectures with billions of
parameters [2], which are naturally trained in parallel on
large GPU clusters due to their extreme compute and memory
requirements. The progressive increase in neural network sizes
has necessitated a corresponding increase in the number of
GPUs to train them. However, with increasing GPU counts,
communication becomes a significant bottleneck in the train-
ing procedure. Thus, designing algorithms that can improve
the efficiency of training at scale is extremely critical. This
will ensure that we can harness the proven benefits of growing
network sizes while being able to train them in a reasonable
amount of time.

The number of parameters in contemporary deep learning
models is often in the tens to hundreds of billions. In their
work on the lottery ticket hypothesis (LTH), Frankle et al. ob-
serve empirically that a large fraction of the parameter set
(80-90%) can be pruned (set to zero) at initialization without
affecting the generalization performance on test data [3].
Subsequently, this phenomenon has witnessed great interest
from the deep learning community and several follow up

studies have tried to further refine the hypothesis, propose
efficient pruning algorithms and/or prove it for a broader class
of neural network architectures [4]–[9].

Pruning algorithms output extremely sparse subnetworks,
which in theory require significantly fewer number of float-
ing point operations as compared to the unpruned networks.
Several sparse matrix multiplication kernels for GPUs have
been proposed that are specifically optimized for the patterns
of sparsities in these subnetworks [10]–[12]. However, in
spite of the advancements, these approaches are significantly
slower than cuBLAS, a popular library for dense matrix
multiplications on NVIDIA GPUs (used by deep learning
frameworks such as PyTorch and Tensorflow). In Figure 1,
we demonstrate that computing a fully connected layer with
90% sparsity using cuBLAS (we fill out zeros explicitly in the
dense matrix) is 6–22× faster than using Sputnik [11], a state-
of-the-art sparse matrix multiplication library for deep learning
workloads. This suggests that utilizing sparse matrix libraries
to improve training performance is currently infeasible.
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Fig. 1. Comparison of the execution times of a fully-connected (FC) layer
with a randomly generated, 90% sparse, square weight matrix in mixed
precision. FC layers compute a linear transform of their input and are a vital
component of various neural network architectures such as transformers [2].
For dense GPU kernels, we use NVIDIA’s cuBLAS, whereas for sparse GPU
kernels, we use NVIDIA’s cuSPARSE and Sputnik [11]. We fix the input
batch size to 576 and vary the size of the weight matrix from 1282 to 40962.

Instead of trying to optimize computation times, in this



work, we focus on exploiting sparsity to optimize memory uti-
lization, and then exploit the saved memory to optimize com-
munication. We demonstrate how our optimizations can greatly
reduce the communication times of two widely used parallel
algorithms for deep learning – namely inter-layer parallelism
(point-to-point communication) and data parallelism (collec-
tive communication). First, we propose a novel approach,
which we call Sparsity-aware Memory Optimization (SAMO),
that provides memory savings of around 66-78%, while still
being compute efficient. Through analytical communication
models as well as experiments, we demonstrate that these
memory savings can be utilized to reduce both the message
transmission time as well as the pipeline latency (often called
“bubble” time) of inter-layer parallelism. Finally, for data
parallelism we only communicate the gradients corresponding
to the non-zero (or unpruned) parameters, decreasing the
message sizes, and thus alleviating the bottleneck of expensive
all-reduce communication.

To demonstrate the efficacy of our optimizations, we inte-
grate our method in AxoNN [13], a highly scalable framework
for parallel deep learning that implements an efficient hybrid
of data and inter-layer parallelism. On GPT-3 2.7B [2], a 2.7
billion parameter model, we demonstrate that SAMO reduces
the memory consumption by 74% (from 80.16 GB to 20.28
GB)! Then, for a strong scaling run of the same model on
128-512 V100 GPUs of Summit, we successfully exploit the
freed up memory to reduce the portion of batch spent in
communication. We show that the absolute reduction in the
communication time accounts for 40% of AxoNN’s batch time
on 512 GPUs. This makes our method a significant 34% faster
than AxoNN, 32% faster than DeepSpeed-3D [14], and 46%
faster that Sputnik [11]. Since Sputnik is designed for single
GPU executions, we integrate it in AxoNN to run it in parallel.
We summarize the important contributions of this work below:

• We present Sparsity-aware Memory Optimization
(SAMO), a novel method that exploits recently proposed
accuracy-preserving parameter pruning algorithms in
deep learning, to significantly reduce the memory
consumption of neural network training while not
sacrificing performance.

• Through analytical communication models and experi-
ments, we demonstrate how these memory savings can
be utilized to significantly improve the communication
performance of two popular algorithms for parallel deep
learning, data and inter-layer parallelism.

• We conduct strong scaling experiments using popular
convolution neural network architectures and transformer-
based language models with 1.3 to 13 billion parameters
on 16 to 2048 GPUs, and demonstrate significant im-
provements in communication times when compared with
two highly scalable parallel deep learning frameworks
AxoNN and DeepSpeed-3D.

II. BACKGROUND AND RELATED WORK

Below, we provide background on neural network pruning,
sparse matrix multiplications, and parallel deep learning.

A. Over-parameterization in neural networks

We call a neural network over-parameterized, when its size
is extremely large as compared to the training dataset. It has
been empirically observed that the more over-parameterized
a neural network gets, the better it seems to generalize on a
held out test dataset [1]. Indeed, the largest neural networks
in deep learning (like the GPT-3 [2]) are massively over-
parameterized. This perplexing phenomenon, that cannot be
explained by classical machine learning, has been an active
area of research in deep learning [1], [15]–[19].

B. Lottery ticket hypothesis

Proposed by Frankle et al. [3]., the lottery ticket hy-
pothesis (LTH) asserts that in a randomly-initialized, over-
parameterized neural network, there exists a subnetwork with
one- to two-tenths of the parameters, which when trained in
isolation can match and even improve the test-set performance
of the original neural network. They theorize that in an over-
parameterized network, it is this subnetwork that effectively
ends up being trained, thus preventing over-fitting. They also
present a simple algorithm to identify this subnetwork. Several
follow up studies have tried to further refine the hypothesis,
propose efficient pruning algorithms and/or prove it for a
broader class of neural network architectures [4]–[9]. In this
work, we use You et al.’s algorithm for pruning [4].

C. Accelerated sparse kernels

NVIDIA’s cuSPARSE is designed for sparse matrices seen
in scientific applications which have extremely high sparsities
(>99%). Therefore, it is not a suitable candidate for the kinds
of sparsities observed in neural network pruning (<90%). A
number of approaches have been proposed that can operate
in these levels of sparsities. Yang et al. augment merge-based
algorithms with a novel row-based splitting technique to hide
memory access latency [12]. Hong et al. design spMM and
sDDMM (used for backward pass of a fully connected layer)
that exploit an adaptive tiling strategy to reduce global memory
access [10]. Gale et al. conduct an extensive survey of the
sparsity patterns found in matrices across a variety of deep
learning workloads [20]. Using the insights drawn from this
study, they design state-of-the-art sparse kernels for spMM
and sDDMM for deep learning workloads [11]. A number
of approaches have been proposed that enforce a certain
sparsity structure. Gray et al. design GPU kernels for block
sparse matrices [21]. Chen et al. propose a novel column-
vector-sparse-encoding for block sparse matrices that provides
speedup over cuBLAS at sparsities as low as 70% at mixed
precision [22]. Dao et al. propose a technique to reduce linear
maps to a product of diagonal block sparse matrices and design
kernels for computing their products efficiently [23], [24].

D. Types of parallelism in deep learning

Three kinds of parallelism, namely intra-layer, inter-layer
and data parallelism have been proposed in parallel deep
learning. Intra-layer parallelism divides the execution of each
layer across GPUs [25]. Inter-layer parallelism assigns a



contiguous subset of neural network layers to each GPU [26]–
[28]. Data parallelism creates a replica of the entire network
on each GPU [29], [30]. Usually, frameworks for parallel deep
learning implement a hybrid of data parallelism with one or
both of intra- and inter-layer parallelism [14], [28], [29]. For
more details, we refer the reader to Ben-Nun et al. [31].

E. The AxoNN deep learning framework

In this paper, we implement our ideas in a state-of-the-art
framework, AxoNN, for parallel deep learning [13]. AxoNN
implements a hybrid of inter-layer and data parallelism. It
divides the set of GPUs into Gdata groups. Each of these
groups operates on an equal sized shard of the input batch, thus
implementing data parallelism. Within each group, there are
Ginter GPUs implementing inter-layer parallelism. To achieve
concurrency within this inter-layer parallel groups, AxoNN
breaks up the input batch shard into several “microbatches”
and processes them in a pipelined fashion. Activations and
gradients for a microbatch are exchanged among neighbor-
ing GPUs using point-to-point communication. As compared
to other frameworks, AxoNN optimizes this communication
by employing i. asynchronous messaging ii. message driven
scheduling of microbatch operations. The former allows it to
overlap communication with computation, whereas the latter
allows it to reduce pipeline stalls. AxoNN supports mixed
precision training [32] and activation checkpointing [33].

III. SPARSITY-AWARE MEMORY OPTIMIZATION

In this section, we discuss our approach to exploit sparse
networks generated by pruning methods to significantly re-
duce the memory consumption of large model training. We
refer to our approach as Sparsity-aware Memory Optimization
(SAMO). We discuss SAMO in the context of mixed-precision
training [32], which is the predominant mode used for the
training of large multi billion-parameter models [29], [34],
[35]. However, the optimizations discussed below are general
and can also be applied to single-precision training.

Mixed-precision training involves storing the model param-
eters and gradients in both 16-bit (half-precision) and 32-
bit (single-precision), and the optimizer states in 32-bit. The
expensive forward and the backward pass are computed in 16-
bit for efficiency, whereas the relatively cheaper optimizer step
is done in 32-bit for accuracy. For more details, we refer the
reader to Micikevicius et al. [32].

Model parameters, gradients and optimizer states are col-
lectively referred to as the model state [29]. While mixed-
precision is compute efficient, storing parameters and gradi-
ents in two precisions results in significantly high memory
consumption [29] (25% more than single-precision training).
For example, in the case of the widely used GPT-3 [2], this
adds up to a significant 3.5 TB. For comparison, the DRAM
capacity of a single V100 GPU on Summit is a mere 16GB.

Before discussing the details of our approach, we define
certain variables as follows:

• θ16 and θ32 – Network parameters in 16- and 32-bit
representation respectively

• ∇θ16 and ∇θ32 – Network gradients in 16- and 32-bit
representation respectively

• os – 32-bit optimizer states for the network
• ind =

⋃
i

indi – output of a parameter pruning algorithm,

where indi stores the indices of the unpruned (non-zero)
parameters for the ith layer.

Now, we present how SAMO can help us in significantly
reducing the model state memory requirements. Note that
SAMO can be applied only after a neural network has been
sparsified using a pruning algorithm.

A. Performance-preserving model state compression

We have already seen in Figure 1 that computing the for-
ward and backward passes with compressed sparse parameter
tensors on GPUs is not a feasible approach. Thus, a memory
optimization that tries to compress model states will be ef-
ficient only if it is able to utilize dense computation kernels
on the GPU. Two important observations about the training
process drive the design of our memory optimizations. First,
most of the compute in neural network training happens in the
forward and the backward pass. Second, out of the various
model state tensors discussed previously, the forward and
backward passes exclusively use θ16 for computation. Thus,
we do not compress θ16. This allows us to directly invoke
dense computation kernels on GPUs. For saving memory, we
compress the other model states i.e., θ32, ∇θ16, ∇θ32, and os,
which together still comprise 90% of the model state memory,
even without θ16! By keeping θ16 in an uncompressed format,
we thus tradeoff a small proportion of the maximum possible
memory savings to gain efficiency in compute.

B. Implementation of compressed storage

To compress a model state, we convert it to a sparse
coordinate (COO) format using the indices of the unpruned
parameters (i.e. ind) output by the pruning algorithm. How-
ever, being 32-bit (32-bit is sufficient for storing the indices
of even the largest models in existence) integers, ind occupies
a non-trivial amount of GPU memory. We tackle this issue in
two ways. First, we note that all of the model state tensors have
zeros at the same indices. Therefore, in our storage scheme,
the various COO tensors (i.e. θ32, ∇θ16, ∇θ32, and os) share a
common index tensor of non-zero values. Secondly, we convert
the index tensors of any layer to those of a hypothetical one-
dimensional view. As an example, say the non-zero indices for
a 2 × 2 state tensor are [(0, 0), (1, 1)]. In a one dimensional
view of the same state tensor (i.e. 4× 1), the non-zero values
are at indices 0 and 3. Thus, we can save memory by storing
only 2 integers (i.e. [0, 3]), without any loss of information. In
general, for an N-dimensional state tensor, this saves us N×
memory. Having discussed how the various model states are
stored by SAMO to optimize for memory, let us now look at
how we compute a batch of data with this storage schema.

C. Training with SAMO

The computation of a batch in neural network training can
be divided into three phases - the forward pass, the backward



pass and the optimizer step. The forward pass computes the
batch loss, the backward pass computes the gradients of the
parameters w.r.t. the batch loss, and the optimizer step updates
the parameters. Let us now look at how these phases are
computed efficiently using SAMO.

Forward Pass: The forward pass of a neural network is
done using the half-precision parameters, θ16. As discussed in
Section III-A, we store θ16 in an uncompressed format with
zeros explicitly filled in for pruned parameters. This allows us
to exploit efficient dense computation kernels for GPUs, like
those available in cuBLAS and cuDNN. Thus, the forward
pass with SAMO is exactly the same as that in normal mixed
precision training without SAMO.

Backward Pass: The backward pass also uses θ16 to compute
the batch gradients. Therefore, just like the forward pass, we
are able to directly invoke efficient dense computation kernels.
However, in Section III-A, we discussed that we store the
half-precision gradients in a compressed state i.e. only for the
unpruned parameters. Thus, we modify the backward pass to
compress the gradients as soon as they are produced for any
layer. We do this at the granularity of a layer, and not the
entire model, so that we never have to store the uncompressed
gradients for the entire model on the GPU memory.

Optimizer Step: In mixed precision training, the optimizer
step consists of three element wise operations. The first step
involves upscaling ∇θ16 to ∇θ32. The second step is running
the optimizer using the upscaled gradients ∇θ32 and the
optimizer states, os to update the 32-bit parameters, θ32. The
final step is to downscale θ32 to θ16. Let us now see how these
three steps are done with SAMO.

We do the first step of upscaling ∇θ16 to ∇θ32 directly
on the compressed tensors itself (as the values for the pruned
parameters are always zero) using dense computation kernels.
Again due to the same reason, the second step of running the
optimizer can be directly computed on the compressed state
tensors using dense kernels. This yields the updated parameters
in 32-bit i.e., θ32. The final step of downcasting θ32 to θ16 is
not straightforward because these tensors are in a compressed
and uncompressed state respectively. To solve this, we first
define a new operation,“expansion”, as the inverse operation of
compression. Essentially, it takes a compressed tensor and the
indices of the non-zero parameters to output the uncompressed
version. Now, we do the parameter down-casting in three steps.
First, we delete the now old uncompressed θ16 from the GPU
memory. Then we make a copy of θ32 in 16-bit. Note that this
is essentially the compressed version of our 16-bit parameters.
Finally, we “expand” this copy using ind to obtain the updated
θ16. Thus, the only modification to the optimizer step is an
“expand” operation in the down-casting step.

D. Analytical model of memory savings

In this section, we derive the memory savings as a result
of storing model states with SAMO. We assume that the
optimizer of choice is Adam [36], which is the go-to optimizer

in deep learning for large model training. Adam stores two
optimizer states per parameter. However, SAMO can be easily
extended to work with other optimizers as well.

First let us derive the model state memory consumption
without pruning. Let φ be the total number of parameters in
the neural network before pruning. Now, θ16 and ∇θ16 take
up 2φ bytes each, whereas θ32 and ∇θ32 take up 4φ bytes
each. Finally, os, which are stored in single precision take up
8φ bytes. This adds up to a total of 20φ bytes (2+2+4+4+8).
Let us call this quantity Mdefault.

Now, let us assume that we are uniformly pruning p fraction
of the parameters before applying SAMO. This leaves us with
(1−p)φ unpruned parameters. Let f = 1−p. We first calculate
the memory required to store the compressed model states
i.e. all model states except θ16. For each of these tensors,
we only need to maintain data for fφ parameters. This adds
upto 18fφ bytes ( 2fφ bytes for ∇θ16, 4fφ each for θ32 and
∇θ32, and another 8fφ for os ). We also maintain a non-
zero index per unpruned parameter. In our storage scheme,
each non-zero index is a 32-bit integer. This requires another
4fφ bytes. Storing the uncompressed θ16 state tensor adds
a further 2φ bytes. Note that our optimizer step creates a
temporary compressed copy of the half precision parameters
at the end of the optimizer step (See Section III-C). This
adds another 2fφ bytes. Adding everything together, the total
memory consumption of model state storage in bytes is :

MSAMO = 18fφ+ 4fφ+ 2φ+ 2fφ (1)
= 24fφ+ 2φ (2)
= 24(1− p)φ+ 2φ (3)
= 20φ− (24p− 6)φ (4)

=Mdefault − (24p− 6)φ (5)

In other words, the absolute amount of memory savings
that SAMO provides is (24p − 6)φ bytes, where p is the
fraction of parameters that have been pruned and φ is the
total number of parameters before pruning. In Figure 2, we
plot the percentage memory saved by SAMO as compared
to default mixed-precision training. We observe that, SAMO
requires a minimum sparsity of 0.25 to break even in terms of
memory consumption. However, given that most DL pruning
algorithms can comfortably prune 80-90% of the parameters,
this is not an issue. In this range of sparsities, we observe that
our method saves a significant 66-78% of memory required to
store model states!

IV. EXPLOITING SAMO FOR IMPROVING PARALLEL
TRAINING PERFORMANCE

When computing on a single GPU, SAMO simply reduces
memory consumption with some overheads in the backward
pass (compression of gradients) and the optimizer step (expan-
sion of parameters). Hence, when training on a single GPU,
SAMO does not lead to any performance improvements. This
is because the total number of floating point operations in
the forward and backward pass is unchanged (since we still
compute in dense). In this section, we discuss how parameter
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Fig. 2. Percentage memory saved by SAMO as compared to default mixed-
precision training. Sparsity here refers to the proportion of parameters that
have been pruned. SAMO can save around 66-78% memory in a range of
0.8-0.9 sparsity, which is typical for most pruning algorithms in deep learning.

pruning and SAMO can be used to optimize the performance
of multi-GPU training.

The main performance bottleneck in parallel neural network
training is communication. GPUs perform computation on
data at a much faster rate than that of data communication
between them on modern HPC interconnects. This problem is
only exacerbated when training larger models, which require
a correspondingly larger number of GPUs on a cluster. Thus,
designing algorithms that can decrease the amount of commu-
nication can greatly benefit parallel deep learning. We now dis-
cuss how the application of SAMO on a pruned neural network
can reduce communication in parallel training. As discussed
in Section II, we use AxoNN, which implements a hybrid
of inter-layer parallelism (point-to-point communication) and
data parallelism (collective communication), to demonstrate
the efficacy of our optimizations.

A. Optimizing collective communication in data parallelism

First, let us see how our optimizations can decrease the
overhead of collective communication in the data parallel
phase. After the end of the forward and backward pass,
AxoNN synchronizes the local gradients of each GPU via an
all-reduce. In Section III-A, we showed how SAMO stores
the 16-bit gradients in a compressed format i.e. only for
the unpruned parameters. This allows us to reduce the size
of collective communication messages by directly invoking
AxoNN’s all-reduce calls on the compressed tensor. This leads
to a significant reduction in the collective communication time.

B. Optimizing point-to-point communication in inter-layer
parallelism

As described in Section II, AxoNN implements a hybrid of
inter-layer and data parallelism by dividing the work among
Ginter × Gdata GPUs. When SAMO is used to reduce the
memory required for training a neural network, we can reduce

the number of GPUs required to deploy a single instance of
the neural network i.e. decrease Ginter. This can allow us to
use more GPUs for data parallelism, and increase Gdata. A
reduced Ginter has the effect of decreasing the time spent in
point-to-point communication thereby increasing the efficiency
of inter-layer parallelism. We now provide a proof for this
claim. We use the following notations:

• B - Batch size
• mbs - The size of each microbatch
• G - Number of GPUs
• tf - Time spent in computation on a microbatch of size

mbs during the forward pass through the entire model
• tb - Time spent in computation on a microbatch of size

mbs during the backward pass through the entire model

Note that tf and tb do not take the point-to-point communi-
cation cost into account. They just denote the compute time
for the forward and backward pass across all the layers.

The time spent in point-to-point communication can be
divided into two parts: the bubble time and the transmis-
sion time. A GPU experiences a pipeline bubble when there
aren’t enough microbatches in the pipeline to keep all of the
GPUs busy. As shown in Figure 3, different GPUs experience
pipeline bubbles at different points in time. But a common
theme is that pipeline bubbles occur towards the beginning and
end of the computation of a batch. We define the transmission
time as the total time spent in sending messages in the pipeline.
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Fig. 3. Illustration of how a batch is computed in inter-layer parallelism
on three GPUs (Ginter = 3). In this example, we have divided the input
batch into 5 microbatches (numbered 0 to 4). The red and blue colors denote
forward and backward passes of microbatches respectively. We assume that
the forward pass takes one unit of time and the backward pass takes two units
of time. We observe that on each GPU, the pipeline bubble time accounts for
6 units, which equals the time to do Ginter − 1 = 2 forward passes and
Ginter − 1 = 2 backward passes.

Let tbubble and tsend denote the bubble time and transmis-
sion time respectively. Narayanan et al. [28] show that tbubble
equals the time it takes to complete forward and backward
passes for Ginter − 1 microbatches on any GPU. We can
also see this in Figure 3, wherein we observe that the bubble
time for a pipeline with Ginter = 3 equals the time to do
two forward and two backward passes. Assuming uniform
distribution of compute, the time to complete the forward and
backward pass of a microbatch on a single GPU is tf+tb

Ginter
.

Thus, the bubble time can be calculated as,

tbubble = (Ginter − 1)× (
tf + tb
Ginter

) (6)

= (tf + tb)× (1− 1

Ginter
) (7)



Now, taking the derivative of tbubble with Ginter, we can
show that the pipeline bubble time is a monotonically increas-
ing function of Ginter:

∂tbubble
∂Ginter

=
tf + tb
G2

inter

> 0 (8)

Since SAMO can help in decreasing Ginter via its memory
savings, we can conclude that it can be used to optimize the
pipeline bubble time. Note that in Equation 8, we observe that
the gradient w.r.t. Ginter is inversely proportional to its square.
Thus, with a progressive increase in model size (which entails
a corresponding increase in Ginter), we expect diminishing
returns in the bubble time improvement.

The transmission time tsend is proportional to the number
of messages sent and received by each GPU. Each GPU
sends and receives four messages per microbatch, two each
in the forward and backward passes. Let us now derive the
total number of microbatches each GPU computes on. First,
AxoNN divides the input batch into Gdata shards, one for
each inter-layer parallel group. Next, each inter-layer parallel
group breaks this batch shard into microbatches of size mbs.
These microbatches are processed by every GPU in the inter-
layer parallel group. Thus the total number of microbatches
computed upon by every GPU is B

Gdata×mbs . Thus, we can
express tsend as,

tsend ∝ 4× B

mbs×Gdata
(9)

∝ 4× B

mbs
× Ginter

G
(∵ Ginter ×Gdata = G) (10)

Taking the derivative of Equation 10 w.r.t. Ginter shows that
tsend is a monotonically increasing function of Ginter:

∂tsend
∂Ginter

∝ B

mbs×G
> 0 (11)

Hence, we can see that using SAMO to decrease Ginter

can also help us decrease the transmission time for point-
to-point communication in inter-layer parallelism. Thus, we
have shown how the memory optimizations in SAMO can be
exploited to reduce the collective communication pertaining to
data parallelism and point-to-point communication pertaining
to inter-layer parallelism respectively. Later, in Section VI,
we provide performance profiles that demonstrate reduction
in communication times as empirical evidence for the claims
we have made in this section.

V. EXPERIMENTAL SETUP

In this section, we provide details of the empirical experi-
ments that we conducted to demonstrate the benefits of our op-
timizations. As discussed in Section II, we used AxoNN [13]
for parallelizing the training process. We first validate the
statistical efficiency of our implementation by training two
neural networks to completion at a sparsity of 0.9. For pruning,
we use You et al.’s “Early-Bird Tickets” pruning algorithm [4].
Then, we study the performance of two convolution neural
networks (VGG-19 [39] and WideResnet-101 [40]) and four
GPT-style transformer models from Brown et al. [2] under a

strong scaling setup to demonstrate the hardware efficiency of
our approach. We use the Oak Ridge National Laboratory’s
Summit supercomputer to run our experiments. Summit has
two POWER9 CPUs and six 16 GB NVIDIA V100 GPUs
per node. Each CPU is connected to 3 GPUs via NVlink. The
intra-node bandwidth, inter-node bandwidth, and the peak half-
precision throughput are 50 GB/s, 12.5 GB/s and 125 Tflop/s
per GPU respectively.

A. Description of neural networks and hyperparameters

Table I lists the set of neural networks and the corre-
sponding hyperparameters used in this study. VGG-19 [39]
and WideResnet-101 [40] are two convolutional neural net-
work (CNN) architectures widely used in computer vision.
GPT-3 [2], a variant of the transformer architecture [41], is
extremely popular in natural language processing for causal
language modeling. For each model, we use the same hyperpa-
rameters (batch size, sequence length, learning rate schedules,
gradient clipping, l2 regularization and optimizer hyperparam-
eters) as used by the authors. We use SGD (with momen-
tum [42]) and the AdamW [43] optimizer for training the
CNN and GPT-3 models respectively. We use MegatronLM’s
highly optimized kernels to implement the GPT-3 models [25].
For the convolution neural networks, we use implementations
provided by the torchvision library1.

TABLE I
LIST OF NEURAL NETWORKS USED IN THIS STUDY. FOR EACH MODEL, WE

LIST THE MINIMUM AND MAXIMUM NUMBER OF GPUS USED IN OUR
STRONG SCALING RUNS. WE CHOOSE THE MINIMUM AND MAXIMUM GPU
COUNTS SUCH THAT THE RATIO OF BATCH SIZE TO NUMBER OF GPUS IS 4

AND 1 RESPECTIVELY.

Neural Network # Parameters Batch Size No. of GPUs

WideResnet-101 [40] 126.89M 128 16–128
VGG-19 [39] 143.67M 128 16–128
GPT-3 XL [2] 1.3B 512 64–512
GPT-3 2.7B [2] 2.7B 512 64–512
GPT-3 6.7B [2] 6.7B 1024 128–1024
GPT-3 13B [2] 13B 2048 256–2048

We profile the neural networks listed in Table I under
a strong scaling setup to demonstrate the efficacy of our
optimizations. For every model, we choose the minimum and
maximum GPU counts such that the ratio of batch size to
number of GPUs is 4 and 1 respectively. For a given model,
we fix the batch size irrespective of the GPU count. This
is because while increasing the batch size leads to better
performance, it also degrades the quality of convergence [44].
Under a strict definition of strong scaling, the final answer
should be the same irrespective of the number of GPUs.
Therefore, it is important to keep the global batch size fixed.
For our approach, we prune the networks to a sparsity of 90%
using You et al.’s “Early Bird Ticket” algorithm [4].

To ensure the correctness of our optimizations, we train
GPT-3 XL and GPT-3 2.7B to completion on the Wikitext-103
dataset [37] and the BookCorpus dataset [38] respectively. We

1https://pytorch.org/vision/stable/index.html
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Fig. 4. Validation perplexities for GPT-3 XL (left) and GPT-3 2.7B (right) on 64 and 128 GPUs of Summit respectively. For AxoNN+SAMO, we prune both
models to a sparsity of 90% using [4]. We use the same hyperparameters as Brown et al. [2] and train on the Wikitext-103 [37] and BookCorpus datasets [38].

present the validation perplexity curves for AxoNN and Ax-
oNN+SAMO. Again, we use a sparsity of 90% and the same
pruning algorithm as the strong scaling runs. The purpose
of this experiment to ensure that our proposed optimizations
work correctly in an end-to-end fashion in combination with
a pruning algorithm. Since this is a sanity check, the datasets
we have used are much smaller than what are typically used
to train large GPT-3 style language models. We highlight prior
work by Samar et al. [45], who have successfully pruned
GPT-3 style language models upto 90% on a much larger and
challenging dataset (Pile [46].)

B. Choice of frameworks

We integrate our optimizations in AxoNN [13] and refer
to it as “AxoNN+SAMO”. We use AxoNN and DeepSpeed-
3D [14], [29] as baselines for dense computations. DeepSpeed-
3D implements a hybrid of data, inter-layer and intra-layer
parallelism for parallel model training. Their data parallel
implementation uses the ZeRO optimizer to shard optimizer
state memory across data parallel ranks [29]. They use
MegatronLM’s implementation of intra-layer parallelism of
transformers [25]. DeepSpeed-3D has been used to train
some of the largest neural networks till date such as Bloom-
176B [34] and Megatron-Turing NLG 530B [35]. Finally, we
integrate Sputnik [11] in AxoNN to create a sparse matrix
multiplication baseline. Note that Sputnik does not support
sparse convolutions, so we do not implement the convolution
architectures in Table I using Sputnik. We build our baselines
using CUDA 11.0, PyTorch 1.12.0, NCCL 2.8.4, GCC 9.1.0
and Spectrum-MPI 10.4.0.3.

C. Evaluation metrics

For the statistical efficiency experiments, we report perplex-
ity on the validation split of the training dataset. Perplexity is
defined as the exponential of the cross entropy loss. For our
strong scaling runs, we report the average iteration time i.e.

time to train on a single batch of input data. We do this by
training for 100 batches and averaging the time of the last 90.

For the transformer models, we also calculate the percentage
of peak half-precision flop/s. To do this, we use Narayanan
et al.’s formula to derive the total number of floating point
operations in a batch [28] of a transformer model and divide
it by the average batch time over 100 training batches to
derive the flop/s. Finally, we divide this quantity by 125
Tflop/s (the peak half-precision flops per GPU on Summit)
and the number of GPUs to obtain the percentage of peak
half-precision throughput.

Since Sputnik is a sparse matrix multiplication library, it
only computes a fraction of the flops that the other dense
computation frameworks compute. For instance at a sparsity
of 90%, it would only compute 10% of the flops. For a fair
comparison, we assume the same number of flops for Sputnik
as the dense computation frameworks while using the time
spent computing the sparse kernels.

VI. RESULTS

We now present the results of the empirical experiments
outlined in Section V.

A. Statistical efficiency

We verify the statistical efficiency of AxoNN+SAMO by
training GPT-3 XL [2] and GPT-3 2.7B [2] to completion at
a sparsity of 90%. We use You et al.’s algorithm [4] to prune
a neural network for AxoNN+SAMO. Figure 4 illustrates
the results of this experiment. We observe that (1) the final
validation perplexities for the pruned networks trained with
AxoNN+SAMO match those of the unpruned network trained
with AxoNN and (2) both AxoNN and AxoNN+SAMO reach
the final validation perplexities in similar number of iterations.
This verifies the correctness of our implementation.

B. Strong scaling performance

Next, we illustrate the results of our strong scaling exper-
iments on WideResnet-101 and VGG-19 in Figure 5, GPT-
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Fig. 6. Time per iteration (batch time) for a strong scaling study of GPT-3 XL (left) and GPT-3 2.7B (right) on Summit. We prune the models to a sparsity
of 90% for AxoNN+SAMO and Sputnik (see Table I for batch sizes). We annotate AxoNN+SAMO’s line with its percentage speedup over AxoNN.

3 XL and GPT-3 2.7B in Figure 6, and on GPT-3 6.7B
and GPT-3 13B in Figure 7. The CNNs used in this study
are nearly 10–100× smaller than the GPT-3 based models
(see Table I). Hence, all of AxoNN, DeepSpeed-3D and
AxoNN+SAMO are able to run these architectures in a pure
data parallel configuration, with a full copy of the network
on each GPU. Thus the only communication here is the all-
reduce on the network gradients. We illustrate these results in
Figure 5. We observe similar batch times for both AxoNN and
DeepSpeed-3D. This is explained by the fact that both these
frameworks have very similar NCCL-based implementations
of data parallelism. Our approach yields speedups of 7–12%
over WideResnet-101 and 18–44% over VGG-19. While both
these speedups are significant, SAMO seems to benefit the
latter architecture more than the former. This is because the
WideResnet-101 architecture spends nearly 1.5× more time
in the computation phase as compared to VGG-19. Also, both
these models have similar number of parameters and thus sim-

ilar communication costs in the data-parallel all-reduce. Thus
the proportion of the batch time spent by the WideResnet-
101 architecture in communication is significantly smaller than
VGG-19. Since our approach optimizes communication, the
benefits for WideResnet-101 are smaller than that of VGG-
19. Note that we do not run Sputnik for the CNNs as the
library does not support sparse convolutions.

Let us now discuss the much larger GPT-3 based neural
networks. These networks are too large to fit on a single GPU
and are thus trained using hybrid parallelism. First, we observe
that the performance of the sparse matrix computation library,
Sputnik is significantly worse than both of our dense baselines
– AxoNN and DeepSpeed-3D, as well as AxoNN+SAMO
(Figures 6 and 7). This is in spite of the fact that the number
of floating point operations computed by Sputnik is 10% of
the other methods. This is in agreement with our observations
in Figure 1 for fully connected layers on a single GPU.
Thus, AxoNN+SAMO ends up being nearly twice as fast as
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Fig. 7. Time per iteration (batch time) for a strong scaling study of GPT-3 6.7B (left) and GPT-3 13B (right) on Summit. We prune the models to a sparsity
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Sputnik across all the GPT-3 style neural networks. It is
evident from Figures 6 and 7 that augmenting AxoNN with our
optimizations significantly improves its performance at scale.
Our method speeds up the training of GPT-3 XL by 10–47%,
GPT-3 2.7B by 10–24%, GPT-3 6.7B by 11–23% and GPT-3
13B by 19–26%. The speedups over DeepSpeed-3D are larger
– 19–51%, 17–33%, 12–38% and 16.4–34% respectively for
the four models.

We also present the percentage of peak half precision
throughputs obtained for GPT-3 13B in Table II. We observe
a significant reduction in the GPU utilization with increasing
GPU counts for DeepSpeed-3D and AxoNN. This is a con-
sequence of increasing communication to computation ratios.
For both frameworks, the peak half precision throughput drops
to around 20% at the largest profiled GPU counts. However,
with AxoNN+SAMO, we observe a smaller reduction in
hardware utilization, with a peak throughput of around 30%
for the largest GPU count. This serves as empirical evidence
of the fact that our optimizations indeed decrease the amount
of communication in parallel training.

TABLE II
PERCENTAGE OF PEAK HALF PRECISION THROUGHPUT FOR A STRONG
SCALING STUDY OF GPT-3 13B ON SUMMIT (SEE TABLE I FOR BATCH

SIZES). WE PRUNE THE MODELS TO A SPARSITY OF 90% FOR
AXONN+SAMO AND SPUTNIK.

# GPUs Sputnik DeepSpeed-3D AxoNN AxoNN+SAMO

256 18.9 44.6 43.3 53.4
512 18.5 39.9 39.7 48.8
1024 16.8 30.1 32.2 41.1
2048 12.2 20.6 22.9 31.0

Since our optimizations are geared toward reducing the
communication costs of training, we expect larger improve-
ments over AxoNN as the number of GPUs increase. Again,
this is because a larger proportion of time is spent in com-
munication as we increase the scale of training. We find our
observations in Figures 6 and 7 to be in agreement with this

hypothesis. We indeed observe the largest speedups for the
largest GPU counts, which are 47% and 34% for GPT-3 XL
and GPT-3 2.7B on 512 GPUs, 23% for GPT-3 6.7B on 1024
GPUs, and 26% for GPT-3 13B on 2048 GPUs.

C. Performance Breakdowns

To verify that the speedups over AxoNN are indeed due
to reduction in communication times, we profile the GPT-
3 2.7B model on 128, 256 and 512 GPUs and provide
breakdowns of the batch times in Figure 8. We divide the batch
time into its non-overlapping phases, namely the compute
(forward and backward pass), point-to-point communication,
pipeline bubble (due to inter-layer parallelism), and collective
communication (due to data parallelism). We use the CUDA
Event API to profile the time spent in each of these phases.

At 128 GPUs, we observe that training is dominated by the
point-to-point communication time. However as the number of
GPUs increase, the proportion of time spent in the point-to-
point communication also decreases. Note that this is in line
with Equation 10, wherein we showed that the messaging time
is inversely proportional to the number of GPUs.

We observe that the primary reason for AxoNN+SAMO’s
improvement over AxoNN on 128 GPUs is due to a speedup
in the point-to-point communication times. The absolute re-
duction in this time is 18% of AxoNN’s batch time. The im-
provements in the collective and pipeline bubble times account
for 6% and 9% of AxoNN’s batch time. Thus for smaller GPU
counts, we conclude that AxoNN+SAMO provides speedups
primarily because of the improvements in the point-to-point
communication times. The difference in the compute times is
the overhead of compressing the parameter gradients at every
backward pass (See Section III-C). The overhead accounts for
12% of AxoNN’s batch time and is significantly overcome by
the 33% (18+6+9) improvement in the total communication
time. We think that these overheads can be reduced by kernel
level optimizations such as fusing the compression operation
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with the backward pass kernels. However, this is out of the
scope of our current work.

At 256 GPUs, the point-to-point communication time is
still dominant but not as much as 128 GPUs. In this case,
the improvement in the point-to-point communication time
accounts for a 16.17% of AxoNN’s batch time. As compared
to 128 GPUs, the improvements in the bubble and collective
communication times account for a significantly larger pro-
portion of AxoNN’s batch time - 13.17% and 11.08%. The
overhead in this case is 10.18% of the total batch time.

At 512 GPUs, we notice a very minor reduction in the point-
to-point communication time. The reduction in the bubble and
collective communication time account for 15% and 21% of
AxoNN’s batch time respectively. The reduction in the point-
to-point communication only improves the batch times by 4%.
In this case, the overhead of compressing gradients is 8%
of AxoNN’s batch time, which is again overcome by 40%
(15+21+4) improvement in the total communication times.

VII. CONCLUSION

It is well known that recent magnitude-based pruning ap-
proaches can lead to significant pruning of neural networks
without reducing statistical efficiency [3], [4]. However, to the
best of our knowledge, no prior work has attempted to exploit
neural network pruning for improving the hardware efficiency
of parallel neural network training. The primary deterrent to
doing this is the sparse nature of the pruned subnetworks,
which results in inefficient hardware performance.

In this work, we presented Sparsity-aware Memory Opti-
mization (SAMO), a novel method that exploits the aforemen-
tioned parameter pruning algorithms to significantly reduce
the memory consumption of neural network training while
not sacrificing performance. We then demonstrated how these
memory savings can be utilized to significantly improve the

communication performance of two popular algorithms for
parallel deep learning, data and inter-layer parallelism. We
conducted strong scaling experiments on two convolution
neural networks, and large GPT-style language models with
1.3 billion to 13 billion parameters proposed by Brown et
al. [2] in their seminal work on the GPT-3 architecture. In
our experiments, we consistently observed significant im-
provements over two highly scalable parallel deep learning
frameworks – AxoNN and DeepSpeed-3D and a state-of-the-
art sparse matrix computation library called Sputnik.
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